Wald Lecture I: Counting Bits with Kolmogorov and Shannon
暂无分享,去创建一个
I. Johnstone | R. Gray | D. Donoho | A. Samarov | M. Ermakov | S. Szarek
[1] Abraham Wald,et al. Statistical Decision Functions , 1951 .
[2] Andrei N. Kolmogorov,et al. On the Shannon theory of information transmission in the case of continuous signals , 1956, IRE Trans. Inf. Theory.
[3] C. A. Rogers. Covering a sphere with spheres , 1963 .
[4] A. Wyner. Random packings and coverings of the unit n-sphere , 1967 .
[5] R. Dudley. The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .
[6] David J. Sakrison,et al. A geometric treatment of the source encoding of a Gaussian random variable , 1968, IEEE Trans. Inf. Theory.
[7] DAVID J. SAKRISON,et al. The Rate Distortion Function for a Class of Sources , 1969, Inf. Control..
[8] David J. Sakrison,et al. The rate of a class of random processes , 1970, IEEE Trans. Inf. Theory.
[9] Toby Berger,et al. Rate distortion theory : a mathematical basis for data compression , 1971 .
[10] L. Lecam. Convergence of Estimates Under Dimensionality Restrictions , 1973 .
[11] David J. Sakrison,et al. Worst sources and robust codes for difference distortion measures , 1975, IEEE Trans. Inf. Theory.
[12] Lucien Birgé. Approximation dans les espaces métriques et théorie de l'estimation , 1983 .
[13] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[14] B. Carl,et al. Entropy, Compactness and the Approximation of Operators , 1990 .
[15] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[16] V. Tikhomirov. Some Fundamental Problems in the Approximate and Exact Representation of Functions of One or Several Variables , 1991 .
[17] V. Tikhomirov,et al. ε-Entropy and ε-Capacity , 1993 .
[18] Amir Dembo,et al. Large Deviations Techniques and Applications , 1998 .
[19] J. Graaf. Book review: Function spaces, entropy numbers and differential operators , 1998 .
[20] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .