The Influence of Point-Defect Clusters on Fatigue Hardening of Copper Single Crystals

In order to investigate quantitatively the influence of point-defect clusters on the saturation stress in metal fatigue, the yield stress for uni-directional deformation was measured as a function of temperature between 78 and 300 °K on copper single crystals which had been fatigue-hardened into saturation at room temperature. Weak beam transmission electron micrographs of these specimens revealed a cell-like dislocation array with a low point-defect cluster density in the dislocation-poor interior and a high cluster density in the dislocation-rich walls of the cells. The size distribution of the defect clusters was found to be exponential for both the cell interior and the cell walls. A quantitative analysis of the yield stress measurements together with the electron-microscopical data showed that the saturation stress of fatigued copper single crystals is controlled by internal stresses and defect clusters within the interior of the cells which impede the dislocation motion through these regions. Zur quantitativen Untersuchung des Einflusses von Punktfehlstellen-Agglomeraten auf die Sattigungsspannung bei der Ermudung von Metallen wurde die kritische Schubspannung fur einachsige Verformung von Kupfer-Einkristallen in Abhangigkeit von der Verformungstemperatur zwischen 78 und 300 °K gemessen, nachdem diese bei Raumtemperatur bis in die Sattigung ermudet worden waren. Elektronenmikroskopische „weak-beam„-Aufnahmen dieser Proben zeigten eine zellartige Versetzungsanordnung mit hohen Dichten an Punktfehler-Agglomeraten in den versetzungsreichen Zellwanden und niedrigen Agglomerat-Dichten im versetzungsarmen Zellinnern. Die Grosenverteilung der Agglomerate ist sowohl im Innern als auch in den Wanden der Zellen exponentiell. Eine quantitative Auswertung der Fliesspannungsmessungen unter Einbeziehung der elektronenmikroskopischen Daten zeigte, das die Sattigungsspannung ermudeter Kupfer-Einkristalle durch die Behinderung der Versetzungsbewegung durch innere Spannungen und Punktfehlstellen-Agglomerate im Zellinnern bestimmt wird.

[1]  J. C. Grosskreutz,et al.  The mechanisms of metal fatigue (I) , 1971 .

[2]  B. Weiss,et al.  Recovery of electrical resistivity of copper after high frequency fatigue (ultrasonic fatigue at 20 kHz) , 1971 .

[3]  M. Whelan,et al.  Investigations of dislocation strain fields using weak beams , 1969 .

[4]  A. Howie,et al.  Early stages of fatigue in copper single crystals , 1969 .

[5]  M. Saxlová Activation energy for elastic interaction between Frank dislocation loops and glide dislocations in f.c.c. Metals , 1969 .

[6]  J. Polák Electrical resistivity of cyclically deformed copper , 1969 .

[7]  J. Grosskreutz,et al.  Mechanisms of fatigue hardening in copper single crystals , 1969 .

[8]  A. Howie,et al.  Approximations of the dynamical theory of diffraction contrast , 1968 .

[9]  H. Kronmüller ON THE MECHANISM OF WORK HARDENING IN f.c.c. METALS , 1967 .

[10]  C. Feltner A debris mechanism of cyclic strain hardening for F.C.C. metals , 1965 .

[11]  N. Wadsworth,et al.  The dependence on temperature and strain rate of the flow stress of cyclically hardened copper single crystals , 1964 .

[12]  R. Fleischer,et al.  Solution hardening by tetragonal dist ortions: Application to irradiation hardening in F.C.C. crystals , 1962 .

[13]  J. Livingston The density and distribution of dislocations in deformed copper crystals , 1962 .

[14]  R. Ham,et al.  The hardening of copper single crystals by fatigue , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  R. Ham,et al.  The hardening and softening of metals by cyclic stressing , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[16]  A. Cottrell,et al.  Effects of temperature on the plastic properties of aluminium crystals , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[17]  W. C. Overton,et al.  Temperature Variation of the Elastic Constants of Cubic Elements. I. Copper , 1955 .

[18]  S. Ceresara Resistivity changes upon low temperature fatiguing and annealing of polycrystalline Al , 1969 .

[19]  W. Frank Thermally activated dislocation motion in a solid containing a multiple spectrum of dislocation obstacles , 1968 .

[20]  M. Rühle Radiation Hardening of Neutron-Irradiated Copper Single Crystals. I. Experimental Results , 1968 .

[21]  H. Mughrabi Electron microscope observations on the dislocation arrangement in deformed copper single crystals in the stress-applied state , 1968 .

[22]  W. Frank,et al.  RADIATION HARDENING OF NEUTRON-IRRADIATED COPPER SINGLE CRYSTALS. II. INTERPRETATION. , 1968 .

[23]  K. Evans,et al.  An Analysis of the Cottrell‐Stokes Law , 1967 .

[24]  M. Rühle Elektronenmikroskopie kleiner Fehlstellenagglomerate in bestrahlten Metallen I. Theorie des Kontrastes und experimentelle Methoden zur Ermittlung des Defekttyps , 1967 .

[25]  Christoph Schwink,et al.  Untersuchungen des Fließbereichs neutronenbestrahlter Kupfereinkristalle. II. Kinematographische Messung der Abgleitgeschwinidigkeit nichtangelassener und angelassener Proben , 1964 .