The Influence of Point-Defect Clusters on Fatigue Hardening of Copper Single Crystals
暂无分享,去创建一个
[1] J. C. Grosskreutz,et al. The mechanisms of metal fatigue (I) , 1971 .
[2] B. Weiss,et al. Recovery of electrical resistivity of copper after high frequency fatigue (ultrasonic fatigue at 20 kHz) , 1971 .
[3] M. Whelan,et al. Investigations of dislocation strain fields using weak beams , 1969 .
[4] A. Howie,et al. Early stages of fatigue in copper single crystals , 1969 .
[5] M. Saxlová. Activation energy for elastic interaction between Frank dislocation loops and glide dislocations in f.c.c. Metals , 1969 .
[6] J. Polák. Electrical resistivity of cyclically deformed copper , 1969 .
[7] J. Grosskreutz,et al. Mechanisms of fatigue hardening in copper single crystals , 1969 .
[8] A. Howie,et al. Approximations of the dynamical theory of diffraction contrast , 1968 .
[9] H. Kronmüller. ON THE MECHANISM OF WORK HARDENING IN f.c.c. METALS , 1967 .
[10] C. Feltner. A debris mechanism of cyclic strain hardening for F.C.C. metals , 1965 .
[11] N. Wadsworth,et al. The dependence on temperature and strain rate of the flow stress of cyclically hardened copper single crystals , 1964 .
[12] R. Fleischer,et al. Solution hardening by tetragonal dist ortions: Application to irradiation hardening in F.C.C. crystals , 1962 .
[13] J. Livingston. The density and distribution of dislocations in deformed copper crystals , 1962 .
[14] R. Ham,et al. The hardening of copper single crystals by fatigue , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[15] R. Ham,et al. The hardening and softening of metals by cyclic stressing , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[16] A. Cottrell,et al. Effects of temperature on the plastic properties of aluminium crystals , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[17] W. C. Overton,et al. Temperature Variation of the Elastic Constants of Cubic Elements. I. Copper , 1955 .
[18] S. Ceresara. Resistivity changes upon low temperature fatiguing and annealing of polycrystalline Al , 1969 .
[19] W. Frank. Thermally activated dislocation motion in a solid containing a multiple spectrum of dislocation obstacles , 1968 .
[20] M. Rühle. Radiation Hardening of Neutron-Irradiated Copper Single Crystals. I. Experimental Results , 1968 .
[21] H. Mughrabi. Electron microscope observations on the dislocation arrangement in deformed copper single crystals in the stress-applied state , 1968 .
[22] W. Frank,et al. RADIATION HARDENING OF NEUTRON-IRRADIATED COPPER SINGLE CRYSTALS. II. INTERPRETATION. , 1968 .
[23] K. Evans,et al. An Analysis of the Cottrell‐Stokes Law , 1967 .
[24] M. Rühle. Elektronenmikroskopie kleiner Fehlstellenagglomerate in bestrahlten Metallen I. Theorie des Kontrastes und experimentelle Methoden zur Ermittlung des Defekttyps , 1967 .
[25] Christoph Schwink,et al. Untersuchungen des Fließbereichs neutronenbestrahlter Kupfereinkristalle. II. Kinematographische Messung der Abgleitgeschwinidigkeit nichtangelassener und angelassener Proben , 1964 .