Contention Resolution with Message Deadlines

In the contention-resolution problem, multiple players contend for access to a shared resource. Contention resolution is used in wireless networks, where messages must be transmitted on a shared communication channel. When two or more messages are transmitted at the same time, a collision occurs, and none of the transmissions succeed. Much of the theoretical work on contention resolution has focused on efficiently resolving collisions in order to obtain throughput guarantees. However, in modern-day networks, not all traffic is treated equally. Instead, messages are often handled according to a notion of priority. While throughput remains an important metric, it fails to capture this increasingly-common scenario of traffic prioritization. Motivated by this concern, we design a contention-resolution algorithm where messages have delivery deadlines. Unit-length messages dynamically arrive over time, each with a corresponding delivery deadline that demarcates a window of time wherein the message must be transmitted successfully. We consider inputs that have a feasible schedule, even if message sizes increase by a constant factor. In this setting, we provide an algorithm which guarantees that each message succeeds by its deadline with high probability in its window size.

[1]  Yang Xiao,et al.  Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs , 2005, IEEE Transactions on Wireless Communications.

[2]  Mahbubur Rahman,et al.  A Utilization-Based Approach for Schedulability Analysis in Wireless Control Systems , 2018, 2018 IEEE International Conference on Industrial Internet (ICII).

[3]  Dong Xu,et al.  Characteristics of network delay and delay jitter and its effect on voice over IP (VoIP) , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[4]  Van Jacobson,et al.  Congestion avoidance and control , 1988, SIGCOMM '88.

[5]  Lotfi Kamoun,et al.  PHY/MAC Enhancements and QoS Mechanisms for Very High Throughput WLANs: A Survey , 2013, IEEE Communications Surveys & Tutorials.

[6]  Frank Thomson Leighton,et al.  Analysis of Backoff Protocols for Multiple Access Channels , 1996, SIAM J. Comput..

[7]  Ruosong Wang,et al.  Exponential separations in the energy complexity of leader election , 2016, STOC.

[8]  Dariusz R. Kowalski,et al.  Randomized mutual exclusion on a multiple access channel , 2016, Distributed Computing.

[9]  Thierry Turletti,et al.  A survey of QoS enhancements for IEEE 802.11 wireless LAN , 2004, Wirel. Commun. Mob. Comput..

[10]  Arjan Durresi,et al.  Quality of Service (QoS) in Software Defined Networking (SDN): A survey , 2017, J. Netw. Comput. Appl..

[11]  Michael A. Bender,et al.  Reallocation Problems in Scheduling , 2013, Algorithmica.

[12]  Keith W. Ross,et al.  Computer networking - a top-down approach featuring the internet , 2000 .

[13]  A. Girotra,et al.  Performance Analysis of the IEEE 802 . 11 Distributed Coordination Function , 2005 .

[14]  Antonio Iera,et al.  Improving QoS and throughput in single- and multihop WLANs through dynamic traffic prioritization , 2005, IEEE Network.

[15]  Dariusz R. Kowalski,et al.  Distributed Online and Stochastic Queueing on a Multiple Access Channel , 2018, ACM Trans. Algorithms.

[16]  Dariusz R. Kowalski,et al.  Medium Access Control for Adversarial Channels with Jamming , 2011, SIROCCO.

[17]  Thanasis Tsantilas,et al.  Efficient optical communication in parallel computers , 1992, SPAA '92.

[18]  Tomasz Jurdzinski,et al.  The Cost of Synchronizing Multiple-Access Channels , 2015, PODC.

[19]  Charles E. Leiserson,et al.  Randomized Routing on Fat-Trees , 1989, Adv. Comput. Res..

[20]  Boaz Patt-Shamir,et al.  Jitter control in QoS networks , 2001, TNET.

[21]  Albert G. Greenberg,et al.  A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels , 1985, JACM.

[22]  Dariusz R. Kowalski,et al.  Packet Latency of Deterministic Broadcasting in Adversarial Multiple Access Channels , 2017, J. Comput. Syst. Sci..

[23]  Yixin Chen,et al.  Real-Time Scheduling for WirelessHART Networks , 2010, 2010 31st IEEE Real-Time Systems Symposium.

[24]  Aravind Srinivasan,et al.  Contention resolution with constant expected delay , 2000, JACM.

[25]  Christian Scheideler,et al.  Competitive and Fair Medium Access Despite Reactive Jamming , 2011, 2011 31st International Conference on Distributed Computing Systems.

[26]  Anthony Rowe,et al.  RT-Link: A Time-Synchronized Link Protocol for Energy- Constrained Multi-hop Wireless Networks , 2006, 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks.

[27]  Michael S. Borella,et al.  Internet packet loss: measurement and implications for end-to-end QoS , 1998, Proceedings of the 1998 ICPP Workshop on Architectural and OS Support for Multimedia Applications Flexible Communication Systems. Wireless Networks and Mobile Computing (Cat. No.98EX206).

[28]  Calvin C. Newport,et al.  Contention Resolution on a Fading Channel , 2016, PODC.

[29]  Bogdan S. Chlebus,et al.  Adversarial Multiple Access Channel with Individual Injection Rates , 2009, OPODIS.

[30]  Frank Thomson Leighton,et al.  Analysis of backoff protocols for multiple access channels , 1987, STOC '87.

[31]  Philippe Flajolet,et al.  Estimating the multiplicities of conflicts to speed their resolution in multiple access channels , 1987, JACM.

[32]  Christian Scheideler,et al.  Sade: competitive MAC under adversarial SINR , 2018, Distributed Computing.

[33]  Dariusz R. Kowalski,et al.  On selection problem in radio networks , 2005, PODC '05.

[34]  Aleksandar Kuzmanovic,et al.  Removing exponential backoff from TCP , 2008, CCRV.

[35]  Michael A. Bender,et al.  Contention resolution without collision detection , 2020, STOC.

[36]  Calvin C. Newport,et al.  Contention Resolution on Multiple Channels with Collision Detection , 2016, PODC.

[37]  Marco Conti,et al.  Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit , 2000, TNET.

[38]  Sanjay Kumar Madria,et al.  DistributedHART: A Distributed Real-Time Scheduling System for WirelessHART Networks , 2019, 2019 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).

[39]  Dariusz R. Kowalski,et al.  On the Wake-Up Problem in Radio Networks , 2005, ICALP.

[40]  Christian Scheideler,et al.  Competitive and fair throughput for co-existing networks under adversarial interference , 2012, PODC '12.

[41]  Rong Zheng,et al.  Starvation Modeling and Identification in Dense 802.11 Wireless Community Networks , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[42]  Ilenia Tinnirello,et al.  Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[43]  Özlem Durmaz Incel,et al.  QoS-aware MAC protocols for wireless sensor networks: A survey , 2011, Comput. Networks.

[44]  Lothar Thiele,et al.  Efficient network flooding and time synchronization with Glossy , 2011, Proceedings of the 10th ACM/IEEE International Conference on Information Processing in Sensor Networks.

[45]  Michael A. Bender,et al.  Contention Resolution with Heterogeneous Job Sizes , 2006, ESA.

[46]  Dan E. Willard,et al.  Log-Logarithmic Selection Resolution Protocols in a Multiple Access Channel , 1986, SIAM J. Comput..

[47]  Christian Scheideler,et al.  A jamming-resistant MAC protocol for single-hop wireless networks , 2008, PODC '08.

[48]  Seth Pettie,et al.  Simple Contention Resolution via Multiplicative Weight Updates , 2019, SOSA@SODA.

[49]  Dariusz R. Kowalski,et al.  Fast Nonadaptive Deterministic Algorithm for Conflict Resolution in a Dynamic Multiple-Access Channel , 2015, SIAM J. Comput..

[50]  Michael A. Bender,et al.  Adversarial contention resolution for simple channels , 2005, SPAA '05.

[51]  James R. Goodman,et al.  Speculative lock elision: enabling highly concurrent multithreaded execution , 2001, MICRO.

[52]  Christian Scheideler,et al.  An Efficient and Fair MAC Protocol Robust to Reactive Interference , 2013, IEEE/ACM Transactions on Networking.

[53]  Maurice Herlihy,et al.  Transactional Memory: Architectural Support For Lock-free Data Structures , 1993, Proceedings of the 20th Annual International Symposium on Computer Architecture.

[54]  Robert Metcalfe,et al.  Ethernet: distributed packet switching for local computer networks , 1988, CACM.

[55]  Michael A. Bender,et al.  Contention Resolution with Constant Throughput and Log-Logstar Channel Accesses , 2018, SIAM J. Comput..

[56]  Eric Allman,et al.  Sendmail, Third Edition , 2002 .

[57]  Peter March,et al.  Stability of binary exponential backoff , 1988, JACM.

[58]  Dariusz R. Kowalski,et al.  Adversarial queuing on the multiple-access channel , 2006, PODC '06.

[59]  Sunghyun Choi,et al.  Analysis of IEEE 802.11e for QoS support in wireless LANs , 2003, IEEE Wireless Communications.

[60]  Dariusz R. Kowalski,et al.  Deterministic Contention Resolution on a Shared Channel , 2019, 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS).

[61]  Miroslaw Kutylowski,et al.  Energy-Efficient Size Approximation of Radio Networks with No Collision Detection , 2002, COCOON.

[62]  Qian M. Zhou,et al.  Singletons for Simpletons: Revisiting Windowed Backoff using Chernoff Bounds , 2021, FUN.

[63]  Alan Burns,et al.  AirTight: A Resilient Wireless Communication Protocol for Mixed-Criticality Systems , 2018, 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA).

[64]  Sumit Roy,et al.  Modelling Throughput and Starvation in 802.11 Wireless Networks with Multiple Flows , 2007, IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference.

[65]  Leslie Ann Goldberg,et al.  Analysis of practical backoff protocols for contention resolution with multiple servers , 1996, SODA '96.

[66]  ContiMarco,et al.  Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit , 2000 .

[67]  Byung-Jae Kwak,et al.  On the Stability of Exponential Backoff , 2003, Journal of research of the National Institute of Standards and Technology.

[68]  Chryssis Georgiou,et al.  Meeting the deadline: on the complexity of fault-tolerant continuous gossip , 2010, PODC '10.

[69]  Thierry Turletti,et al.  A survey of QoS enhancements for IEEE 802.11 wireless LAN: Research Articles , 2004 .

[70]  Grzegorz Stachowiak,et al.  Asynchronous Shared Channel , 2017, PODC.

[71]  D. Kaur,et al.  QoS in WLAN Using IEEE802.11e: Survey of QoS in MAC Layer Protocols , 2012, 2012 Second International Conference on Advanced Computing & Communication Technologies.

[72]  David L. Black,et al.  Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers , 1998, RFC.

[73]  Karakus Murat,et al.  ソフトウェア定義ネットワーキング(SDN)におけるサービス(QoS)の品質:調査【Powered by NICT】 , 2017 .

[74]  Dariusz R. Kowalski,et al.  Scalable wake-up of multi-channel single-hop radio networks , 2016, Theor. Comput. Sci..

[75]  Stephen E. Deering,et al.  Internet Protocol, Version 6 (IPv6) Specification , 1995, RFC.

[76]  Prudence W. H. Wong,et al.  Scheduling Dynamic Parallel Workload of Mobile Devices with Access Guarantees , 2018, TOPC.

[77]  Michael A. Bender,et al.  Contention resolution with log-logstar channel accesses , 2016, STOC.

[78]  Jangeun Jun,et al.  Fairness and QoS in multihop wireless networks , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[79]  Marco Conti,et al.  IEEE 802.11 protocol: design and performance evaluation of an adaptive backoff mechanism , 2000, IEEE Journal on Selected Areas in Communications.

[80]  Marek Chrobak,et al.  The wake-up problem in multi-hop radio networks , 2004, SODA '04.

[81]  Stephan Olariu,et al.  Uniform leader election protocols for radio networks , 2001, International Conference on Parallel Processing, 2001..

[82]  Dariusz R. Kowalski,et al.  Broadcasting on Adversarial Multiple Access Channels , 2019, 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA).

[83]  Guy E. Blelloch,et al.  Analyzing Contention and Backoff in Asynchronous Shared Memory , 2017, PODC.

[84]  Antonio Fernández,et al.  Unbounded Contention Resolution in Multiple-Access Channels , 2011, PODC '11.

[85]  Eli Upfal,et al.  Stochastic contention resolution with short delays , 1995, STOC '95.

[86]  Dariusz R. Kowalski,et al.  A better wake-up in radio networks , 2004, PODC '04.