Performance of LiCl Impregnated Mesoporous Material Coating over Corrugated Heat Exchangers in a Solid Sorption Chiller

[1]  Yuri I. Aristov,et al.  Adsorption cooling utilizing the “LiBr/silica – ethanol” working pair: Dynamic optimization of the adsorber/heat exchanger unit , 2014 .

[2]  Ruzhu Wang,et al.  Development of a new synthesized adsorbent for refrigeration and air conditioning applications , 2006 .

[3]  Yuri I. Aristov,et al.  Making adsorptive chillers faster by a proper choice of adsorption isobar shape: Comparison of optimal and real adsorbents , 2014 .

[4]  Alessio Sapienza,et al.  Development and lab-test of a mobile adsorption air-conditioner , 2012 .

[5]  Giuseppe Starace,et al.  The design of countercurrent evaporative condensers with the hybrid method , 2018 .

[6]  Evangelos Bellos,et al.  Thermodynamic investigation of LiCl-H2O working pair in a double effect absorption chiller driven by parabolic trough collectors , 2017 .

[7]  Yury I. Aristov,et al.  Novel Materials for Adsorptive Heat Pumping and Storage: Screening and Nanotailoring of Sorption Properties , 2007 .

[8]  Katsunori Nagano,et al.  A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system , 2015 .

[9]  Yuri I. Aristov,et al.  A new generation cooling device employing CaCl2-in-silica gel–water system , 2009 .

[10]  A. Freni,et al.  Selective water sorbent for solid sorption chiller: experimental results and modelling , 2004 .

[11]  Yuri I. Aristov,et al.  Challenging offers of material science for adsorption heat transformation: A review , 2013 .

[12]  Runhua Jiang,et al.  Performance analysis of a liquid absorption dehumidifier driven by jacket-cooling water of a diesel engine in a CCHP system , 2018 .

[13]  Michel Dubois,et al.  Thermodynamics of the LiCl + H2O System , 2002 .

[14]  Ruzhu Wang,et al.  A review on adsorption working pairs for refrigeration , 2009 .

[15]  Tao Wen,et al.  Enhancing the dehumidification performance of LiCl solution with surfactant PVP-K30 , 2018, Energy and Buildings.

[16]  Ruzhu Wang,et al.  Investigation on performance of multi-salt composite sorbents for multilevel sorption thermal energy storage , 2017 .

[17]  Gerrit Füldner,et al.  A New Adsorbent Composite Material Based on Metal Fiber Technology and Its Application in Adsorption Heat Exchangers , 2015 .

[18]  Makoto Nakamura,et al.  Experimental testing of a small sorption air cooler using composite material made from natural siliceous shale and chloride , 2015 .

[19]  A. Freni,et al.  Composite Sorbent of Methanol “Lithium Chloride in Mesoporous Silica Gel” for Adsorption Cooling Machines: Performance and Stability Evaluation , 2009 .

[20]  Giuseppe Starace,et al.  The hybrid method applied to the plate-finned tube evaporator geometry , 2017 .

[21]  Tao Wen,et al.  Investigation on the regeneration performance of liquid desiccant by adding surfactant PVP-K30 , 2018, International Journal of Heat and Mass Transfer.

[22]  Ruzhu Wang,et al.  A consolidated calcium chloride-expanded graphite compound for use in sorption refrigeration systems , 2007 .

[23]  A. Freni,et al.  An advanced solid sorption chiller using SWS-1L , 2007 .

[24]  Yuri I. Aristov,et al.  Dynamic optimization of adsorptive chillers: Compact layer vs. bed of loose grains , 2017 .

[25]  Valentin N. Parmon,et al.  Selective water sorbents for multiple applications, 3. CaCl2 solution confined in micro- and mesoporous silica gels: Pore size effect on the “solidification-melting” diagram , 1997 .

[26]  Yuri I. Aristov,et al.  Experimental testing of a lab-scale adsorption chiller using a novel selective water sorbent “silica modified by calcium nitrate” , 2012 .

[27]  Yuri I. Aristov,et al.  Adsorption cycle “heat from cold” for upgrading the ambient heat: The testing a lab-scale prototype with the composite sorbent CaClBr/silica , 2018 .

[28]  K. A. Antonopoulos,et al.  Exergetic and energetic comparison of LiCl-H2O and LiBr-H2O working pairs in a solar absorption cooling system , 2016 .

[29]  Katsunori Nagano,et al.  The Evaluation of the Moisture Sorption Mechanism of Chloride-Impregnated Wakkanai Siliceous Shale , 2011 .

[30]  Yury Aristov,et al.  New family of solid sorbents for adsorptive cooling: Material scientist approach , 2007 .

[31]  Vinay Kumar,et al.  Optimum Heat Source Temperature and Performance Comparison of LiCl–H2O and LiBr–H2O Type Solar Cooling System , 2018 .

[32]  Ali Reza Kamali,et al.  Thermokinetic characteristics of lithium chloride , 2011 .

[33]  Alessio Sapienza,et al.  SAPO-34 coated adsorbent heat exchanger for adsorption chillers , 2015 .

[34]  Ruzhu Wang,et al.  Experimental investigation adsorption chillers using micro-porous silica gel–water and compound adsorbent-methanol , 2013 .

[35]  A. Freni,et al.  Reallocation of adsorption and desorption times for optimisation of cooling cycles , 2012 .

[36]  Gerrit Füldner,et al.  “Water - Silica Siogel” working pair for adsorption chillers: Adsorption equilibrium and dynamics , 2017 .

[37]  Giovanni Restuccia,et al.  Selective water sorbents for multiple applications, 1. CaCl2 confined in mesopores of silica gel: Sorption properties , 1996 .

[38]  Makoto Nakamura,et al.  Improvement of water vapor adsorption ability of natural mesoporous material by impregnating with chloride salts for development of a new desiccant filter , 2011 .