DNAzymes in Environmental Sensing

Please click here to view a statement of retraction concerning this article.

[1]  D. Patel,et al.  Adaptive recognition by nucleic acid aptamers. , 2000, Science.

[2]  J. Feigon,et al.  Three-dimensional solution structure of the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG). , 1994, Journal of molecular biology.

[3]  R. Symons,et al.  Small catalytic RNAs. , 1992, Annual review of biochemistry.

[4]  R R Breaker,et al.  An amino acid as a cofactor for a catalytic polynucleotide. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Murray,et al.  Secondary Structure Mapping of an RNA Ligand That Has High Affinity for the MetJ Repressor Protein and Interference Modification Analysis of the Protein-RNA Complex* , 1999, The Journal of Biological Chemistry.

[6]  A D Ellington,et al.  Design and optimization of effector-activated ribozyme ligases. , 2000, Nucleic acids research.

[7]  Carl R. Woese,et al.  4 Probing RNA Structure, Function, and History by Comparative Analysis , 1993 .

[8]  Otto S. Wolfbeis,et al.  Optical sensors for determination of heavy metal ions , 1997 .

[9]  M. Stojanović,et al.  Aptamer-based folding fluorescent sensor for cocaine. , 2001, Journal of the American Chemical Society.

[10]  D. Drolet,et al.  An enzyme-linked oligonucleotide assay , 1996, Nature Biotechnology.

[11]  C. Geyer,et al.  Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme. , 1997, Chemistry & biology.

[12]  R. Breaker Engineered allosteric ribozymes as biosensor components. , 2002, Current opinion in biotechnology.

[13]  E. Kretschmann,et al.  Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light , 1968 .

[14]  Darko Stefanovic,et al.  Deoxyribozyme-based logic gates. , 2002, Journal of the American Chemical Society.

[15]  T Turbadar,et al.  Complete Absorption of Light by Thin Metal Films , 1959 .

[16]  Aaron Klug,et al.  Crystallographic and biochemical investigation of the lead(II)-catalyzed hydrolysis of yeast phenylalanine tRNA. , 1985 .

[17]  B. Sullenger,et al.  Developing aptamers into therapeutics. , 2000, The Journal of clinical investigation.

[18]  B. Imperiali,et al.  Design and Evaluation of a Peptidyl Fluorescent Chemosensor for Divalent Zinc , 1996 .

[19]  Martin Romantschuk,et al.  Use of bioluminescent bacterial sensors as an alternative method for measuring heavy metals in soil extracts , 2002 .

[20]  Jing Li,et al.  A highly sensitive and selective catalytic DNA biosensor for lead ions [9] , 2000 .

[21]  C. Gibbs,et al.  Selection of a Suppressor Mutation That Restores Affinity of an Oligonucleotide Inhibitor for Thrombin Using in Vitro Genetics (*) , 1995, The Journal of Biological Chemistry.

[22]  A. Bertelsen,et al.  Structural and functional characterization of potent antithrombotic oligonucleotides possessing both quadruplex and duplex motifs. , 1995, Biochemistry.

[23]  M. Famulok,et al.  The Ca2+ Ion as a Cofactor for a Novel RNA-Cleaving Deoxyribozyme† , 1996 .

[24]  Milan N Stojanovic,et al.  Fluorescent Sensors Based on Aptamer Self-Assembly. , 2000, Journal of the American Chemical Society.

[25]  Richard Ting,et al.  High affinity DNAzyme-based ligands for transition metal cations - a prototype sensor for Hg2+. , 2004, Organic & biomolecular chemistry.

[26]  A. Ellington,et al.  Adapting selected nucleic acid ligands (aptamers) to biosensors. , 1998, Analytical chemistry.

[27]  R. Breaker,et al.  Immobilized RNA switches for the analysis of complex chemical and biological mixtures , 2001, Nature Biotechnology.

[28]  J. Feigon,et al.  Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Kauer,et al.  Convergent, self-encoded bead sensor arrays in the design of an artificial nose. , 1999, Analytical chemistry.

[30]  Yingfu Li,et al.  Structure-switching signaling aptamers. , 2003, Journal of the American Chemical Society.

[31]  T. Vo‐Dinh,et al.  Surface-enhanced Raman gene probes. , 1994, Analytical chemistry.

[32]  R L Juliano,et al.  Macromolecular therapeutics: emerging strategies for drug discovery in the postgenome era. , 2001, Molecular interventions.

[33]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[34]  J. Giesy,et al.  Characterization of dioxin‐like activity of sediments from a Czech River Basin , 2001, Environmental toxicology and chemistry.

[35]  A. Jäschke,et al.  Nucleic acid enzymes. , 2005, Current opinion in biotechnology.

[36]  Yi Lu,et al.  A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. , 2003, Journal of the American Chemical Society.

[37]  D. Walt,et al.  A fiber-optic microarray biosensor using aptamers as receptors. , 2000, Analytical biochemistry.

[38]  D. Williams,et al.  Function of specific 2'-hydroxyl groups of guanosines in a hammerhead ribozyme probed by 2' modifications. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J Li,et al.  In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme. , 2000, Nucleic acids research.

[40]  M. Famulok,et al.  Nucleic acid aptamers-from selection in vitro to applications in vivo. , 2000, Accounts of chemical research.

[41]  Georg Sczakiel,et al.  Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1. , 2002, Nucleic acids research.

[42]  Marko Virta,et al.  Analysis of arsenic bioavailability in contaminated soils , 2003, Environmental toxicology and chemistry.

[43]  T. Mayr Optical Sensors for the Determination of Heavy Metal Ions , 2002 .

[44]  P. Corbisier,et al.  Assessment of bioavailable arsenic and copper in soils and sediments from the Antofagasta region of northern Chile. , 2002, The Science of the total environment.

[45]  A. Kopylov,et al.  Combinatorial Chemistry of Nucleic Acids: SELEX , 2000, Molecular Biology.

[46]  M. Stojanović,et al.  Catalytic Molecular Beacons , 2001, Chembiochem : a European journal of chemical biology.

[47]  Dipankar Sen,et al.  A catalytic DNA for porphyrin metallation , 1996, Nature Structural Biology.

[48]  J. Szostak,et al.  In vitro selection of functional nucleic acids. , 1999, Annual review of biochemistry.

[49]  S. P. Fodor,et al.  Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. , 1994, Journal of medicinal chemistry.

[50]  J. Swalen Optical properties of Langmuir-Blodgett films , 1986 .

[51]  C. O’Sullivan Aptasensors – the future of biosensing? , 2002, Analytical and bioanalytical chemistry.

[52]  K. Rurack,et al.  A Selective and Sensitive Fluoroionophore for HgII, AgI, and CuII with Virtually Decoupled Fluorophore and Receptor Units , 2000 .

[53]  Andrew D Ellington,et al.  Selecting nucleic acids for biosensor applications. , 2002, Combinatorial chemistry & high throughput screening.

[54]  A. Ellington,et al.  Aptamer beacons for the direct detection of proteins. , 2001, Analytical biochemistry.

[55]  R. Cedergren,et al.  Mixed deoxyribo- and ribo-oligonucleotides with catalytic activity , 1990, Nature.

[56]  Penmetcha K. R. Kumar,et al.  Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV‐1 , 2000, Genes to cells : devoted to molecular & cellular mechanisms.

[57]  Andrew D. Ellington,et al.  Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity , 2000 .

[58]  Ewa Heyduk,et al.  Molecular beacons for detecting DNA binding proteins , 2002, Nature Biotechnology.

[59]  S. Jayasena Aptamers: an emerging class of molecules that rival antibodies in diagnostics. , 1999, Clinical chemistry.

[60]  F. Michel,et al.  Structure and activities of group II introns. , 1995, Annual review of biochemistry.

[61]  The RNA-folding problem , 1992 .

[62]  J. F. Atkins,et al.  Presence and location of modified nucleotides in Escherichia coli tmRNA: structural mimicry with tRNA acceptor branches , 1998, The EMBO journal.

[63]  S D Jayasena,et al.  Use of a high affinity DNA ligand in flow cytometry. , 1996, Nucleic acids research.

[64]  L. Gold,et al.  Post-SELEX combinatorial optimization of aptamers. , 1997, Bioorganic & medicinal chemistry.

[65]  Yingfu Li,et al.  An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. , 2003, Journal of the American Chemical Society.

[66]  A. Ellington,et al.  Training ribozymes to switch , 1999, Nature Structural Biology.

[67]  G. F. Joyce,et al.  RNA cleavage by a DNA enzyme with extended chemical functionality. , 2000, Journal of the American Chemical Society.

[68]  J. Rozenski,et al.  New techniques for the rapid characterization of oligonucleotides by mass spectrometry. , 1999, Nucleosides & nucleotides.

[69]  Lloyd M. Smith,et al.  DNA computing on surfaces , 2000, Nature.

[70]  S. Swaminathan,et al.  Tertiary structure motif of Oxytricha telomere DNA. , 1994, Biochemistry.

[71]  P. Moore,et al.  The RNA-Folding Problem , 2019, Integer Linear Programming in Computational and Systems Biology.

[72]  J. R. Williamson,et al.  G-quartet structures in telomeric DNA. , 1994, Annual review of biophysics and biomolecular structure.

[73]  Yingfu Li,et al.  Tripartite molecular beacons. , 2002, Nucleic acids research.

[74]  Ronald R. Breaker,et al.  In vitro selection of self-cleaving DNAs. , 1996, Chemistry & biology.

[75]  Andrew D. Ellington,et al.  In vitro selection of signaling aptamers , 2000, Nature Biotechnology.

[76]  J. Coleman,et al.  Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. , 1992, Annual review of biochemistry.

[77]  Weihong Tan,et al.  Molecular aptamer beacons for real-time protein recognition. , 2002, Biochemical and biophysical research communications.

[78]  G. Agarwal,et al.  Electromagnetic fields in spatially dispersive media , 1974 .

[79]  D. Thiele,et al.  Four-stranded nucleic acid structures 25 years later: from guanosine gels to telomer DNA. , 1990, Journal of biomolecular structure & dynamics.

[80]  A D Ellington,et al.  In vitro selection of nucleic acids for diagnostic applications. , 2000, Journal of biotechnology.

[81]  Ronald R. Breaker,et al.  In Vitro Selection of Catalytic Polynucleotides. , 1997, Chemical reviews.

[82]  O A Sadik,et al.  Advances in analytical technologies for environmental protection and public safety. , 2004, Journal of environmental monitoring : JEM.

[83]  A. Ellington,et al.  Dissecting protein:protein interactions between transcription factors with an RNA aptamer. , 1995, RNA.

[84]  M. Famulok,et al.  Characterization and divalent metal-ion dependence of in vitro selected deoxyribozymes which cleave DNA/RNA chimeric oligonucleotides. , 1997, Journal of molecular biology.

[85]  G. F. Joyce,et al.  A general purpose RNA-cleaving DNA enzyme. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[86]  S. Klußmann,et al.  Short bioactive Spiegelmers to migraine-associated calcitonin gene-related peptide rapidly identified by a novel approach: tailored-SELEX. , 2003, Nucleic acids research.

[87]  S. P. Fodor,et al.  Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. , 1994, Journal of medicinal chemistry.

[88]  S. Silverman In vitro selection, characterization, and application of deoxyribozymes that cleave RNA , 2005, Nucleic acids research.

[89]  B. Rosen,et al.  Biochemistry of arsenic detoxification , 2002, FEBS letters.

[90]  J. Rozenski,et al.  Interpretation of oligonucleotide mass spectra for determination of sequence using electrospray ionization and tandem mass spectrometry. , 1996, Analytical chemistry.

[91]  B. Maliwal,et al.  Determination of picomolar concentrations of metal ions using fluorescence anisotropy: biosensing with a "reagentless" enzyme transducer. , 1998, Analytical chemistry.

[92]  D R Walt,et al.  Application of high-density optical microwell arrays in a live-cell biosensing system. , 2000, Analytical biochemistry.

[93]  Andrew Ellington,et al.  In vitro selection of an allosteric ribozyme that transduces analytes to amplicons , 1999, Nature Biotechnology.

[94]  Takashi Asano,et al.  Peer Reviewed: Recovering Sustainable Water from Wastewater , 2004 .

[95]  P. Limbach,et al.  Summary: the modified nucleosides of RNA. , 1994, Nucleic acids research.

[96]  J. Szostak,et al.  A DNA metalloenzyme with DNA ligase activity , 1995, Nature.

[97]  D. Patel,et al.  Structural analysis of nucleic acid aptamers. , 1997, Current opinion in chemical biology.

[98]  R. Schroeder,et al.  RNA as a catalyst: Natural and designed ribozymes , 1993, BioEssays : news and reviews in molecular, cellular and developmental biology.

[99]  W. Tan,et al.  Using molecular beacons to probe molecular interactions between lactate dehydrogenase and single-stranded DNA. , 2000, Analytical chemistry.

[100]  R R Breaker,et al.  A DNA enzyme that cleaves RNA. , 1994, Chemistry & biology.

[101]  T. Asano,et al.  Recovering sustainable water from wastewater. , 2004, Environmental science & technology.

[102]  T. Applegate,et al.  DzyNA-PCR: use of DNAzymes to detect and quantify nucleic acid sequences in a real-time fluorescent format. , 2000, Clinical chemistry.

[103]  S. Silverman,et al.  Deoxyribozymes: DNA catalysts for bioorganic chemistry. , 2004, Organic & biomolecular chemistry.

[104]  D. Lilley,et al.  Structure, folding and mechanisms of ribozymes. , 2005, Current opinion in structural biology.

[105]  D. Walt,et al.  Ordered Nanowell Arrays. , 1997 .

[106]  David R Walt,et al.  Optical imaging fiber-based single live cell arrays: a high-density cell assay platform. , 2002, Analytical chemistry.

[107]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.