Nested Iterative Algorithms for Convex Constrained Image Recovery Problems

The objective of this paper is to develop methods for solving image recovery problems subject to constraints on the solution. More precisely, we will be interested in problems which can be formulated as the minimization over a closed convex constraint set of the sum of two convex functions $f$ and $g$, where $f$ may be nonsmooth and $g$ is differentiable with a Lipschitz-continuous gradient. To reach this goal, we derive two types of algorithms that combine forward-backward and Douglas-Rachford iterations. The weak convergence of the proposed algorithms is proved. In the case when the Lipschitz-continuity property of the gradient of $g$ is not satisfied, we also show that, under some assumptions, it remains possible to apply these methods to the considered optimization problem by making use of a quadratic extension technique. The effectiveness of the algorithms is demonstrated for two wavelet-based image restoration problems involving a signal-dependent Gaussian noise and a Poisson noise, respectively.

[1]  Nelly Pustelnik,et al.  A constrained forward-backward algorithm for image recovery problems , 2008, 2008 16th European Signal Processing Conference.

[2]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[3]  Mila Nikolova,et al.  Local Strong Homogeneity of a Regularized Estimator , 2000, SIAM J. Appl. Math..

[4]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[5]  Alfredo N. Iusem,et al.  On the projected subgradient method for nonsmooth convex optimization in a Hilbert space , 1998, Math. Program..

[6]  Stéphane Mallat,et al.  Sparse geometric image representations with bandelets , 2005, IEEE Transactions on Image Processing.

[7]  E. Candès,et al.  Recovering edges in ill-posed inverse problems: optimality of curvelet frames , 2002 .

[8]  P. L. Combettes,et al.  Solving monotone inclusions via compositions of nonexpansive averaged operators , 2004 .

[9]  R. Tyrrell Rockafellar,et al.  Convergence Rates in Forward-Backward Splitting , 1997, SIAM J. Optim..

[10]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[11]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[12]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[13]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[14]  Charles L. Byrne,et al.  Iterative image reconstruction algorithms based on cross-entropy minimization , 1993, IEEE Trans. Image Process..

[15]  Michael Unser,et al.  A Fast Thresholded Landweber Algorithm for Wavelet-Regularized Multidimensional Deconvolution , 2008, IEEE Transactions on Image Processing.

[16]  S. Mallat A wavelet tour of signal processing , 1998 .

[17]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[18]  Antonin Chambolle,et al.  A l1-Unified Variational Framework for Image Restoration , 2004, ECCV.

[19]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[20]  Paul Tseng,et al.  A Modified Forward-backward Splitting Method for Maximal Monotone Mappings 1 , 1998 .

[21]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[22]  Deguang Han,et al.  Frames, bases, and group representations , 2000 .

[23]  Dirk A. Lorenz,et al.  A generalized conditional gradient method and its connection to an iterative shrinkage method , 2009, Comput. Optim. Appl..

[24]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .

[25]  Valérie R. Wajs,et al.  A variational formulation for frame-based inverse problems , 2007 .

[26]  J.-C. Pesquet,et al.  A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.

[27]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[28]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[29]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[30]  Caroline Chaux,et al.  Image analysis using a dual-tree M-band wavelet transform , 2006, IEEE Transactions on Image Processing.

[31]  Patrick L. Combettes,et al.  Proximal Thresholding Algorithm for Minimization over Orthonormal Bases , 2007, SIAM J. Optim..

[32]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[33]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[34]  Jeffrey A. Fessler,et al.  Ieee Transactions on Image Processing: to Appear Hybrid Poisson/polynomial Objective Functions for Tomographic Image Reconstruction from Transmission Scans , 2022 .

[35]  K. Lange,et al.  A Theoretical Study of Some Maximum Likelihood Algorithms for Emission and Transmission Tomography , 1987, IEEE Transactions on Medical Imaging.

[36]  J. Pesquet,et al.  Wavelet thresholding for some classes of non–Gaussian noise , 2002 .

[37]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[38]  K. Bredies,et al.  Linear Convergence of Iterative Soft-Thresholding , 2007, 0709.1598.

[39]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[40]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[41]  Mohamed-Jalal Fadili,et al.  A Proximal Iteration for Deconvolving Poisson Noisy Images Using Sparse Representations , 2008, IEEE Transactions on Image Processing.

[42]  Mohamed-Jalal Fadili,et al.  Deconvolution of confocal microscopy images using proximal iteration and sparse representations , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.