Quasi interiors, lagrange multipliers, andLp spectral estimation with lattice bounds
暂无分享,去创建一个
[1] Victor Klee,et al. Extremal structure of convex sets. II , 1958 .
[2] C. C. Braunschweiger,et al. Quasi-interior points and the extension of linear functionals , 1966 .
[3] Jonathan M. Borwein,et al. Partially finite convex programming, Part I: Quasi relative interiors and duality theory , 1992, Math. Program..
[4] Jonathan M. Borwein,et al. A simple constraint qualification in infinite dimensional programming , 1986, Math. Program..
[5] R. Holmes. Geometric Functional Analysis and Its Applications , 1975 .
[6] Jr. V. L. Klee. Convex sets in linear spaces. III. , 1951 .
[7] R. Rockafellar. Conjugate Duality and Optimization , 1987 .
[8] R. Goodrich,et al. $L_2 $ Spectral Estimation , 1986 .
[9] A. Peressini. Ordered topological vector spaces , 1967 .
[10] C. Micchelli,et al. Smoothing and Interpolation in a Convex Subset of a Hilbert Space , 1988 .
[11] V. L. KleeJr.. Extremal structure of convex sets , 1957 .
[12] Allan O. Steinhardt,et al. Spectral estimation via minimum energy correlation extension , 1985, IEEE Trans. Acoust. Speech Signal Process..
[13] Marc Teboulle,et al. A comparison of constraint quali cations in in nite-dimensional convex programming , 1990 .
[14] Douglass J. Wilde,et al. Foundations of Optimization. , 1967 .
[15] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[16] H. H. Schaefer. Banach Lattices and Positive Operators , 1975 .
[17] Robert K. Goodrich,et al. Lp-spectral estimation with anL∞-upper bound , 1993 .
[18] Jonathan M. Borwein,et al. Partially finite convex programming, Part II: Explicit lattice models , 1992, Math. Program..
[19] M. Limber. Quasi interiors of convex sets and applications to optimization , 1991 .