A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli.

Changes in DNA supercoiling are induced by a wide range of environmental stresses in Escherichia coli, but the physiological significance of these responses remains unclear. We now demonstrate that an increase in negative supercoiling is necessary for transcriptional activation of a large subset of osmotic stress-response genes. Using a microarray-based approach, we have characterized supercoiling-dependent gene transcription by expression profiling under conditions of high salt, in conjunction with the microbial antibiotics novobiocin, pefloxacin, and chloramphenicol. Algorithmic clustering and statistical measures for gauging cellular function show that this subset is enriched for genes critical in osmoprotectant transport/synthesis and rpoS-driven stationary phase adaptation. Transcription factor binding site analysis also supports regulation by the global stress sigma factor rpoS. In addition, these studies implicate 60 uncharacterized genes in the osmotic stress regulon, and offer evidence for a broader role for supercoiling in the control of stress-induced transcription.

[1]  M. Record,et al.  Responses of E. coli to osmotic stress: large changes in amounts of cytoplasmic solutes and water. , 1998, Trends in biochemical sciences.

[2]  J. Gralla,et al.  Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli , 1987, Journal of bacteriology.

[3]  Winfried Boos,et al.  Maltose/Maltodextrin System of Escherichia coli: Transport, Metabolism, and Regulation , 1998, Microbiology and Molecular Biology Reviews.

[4]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[5]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[6]  J. Glasner,et al.  Genome-wide expression profiling in Escherichia coli K-12. , 1999, Nucleic acids research.

[7]  J. M. Wood Osmosensing by Bacteria: Signals and Membrane-Based Sensors , 1999, Microbiology and Molecular Biology Reviews.

[8]  C. Higgins,et al.  The Downstream Regulatory Element of the proU Operon of Salmonella typhimurium Inhibits Open Complex Formation by RNA Polymerase at a Distance* , 2000, The Journal of Biological Chemistry.

[9]  C. S. Hulton,et al.  DNA twist, flexibility and transcription of the osmoregulated proU promoter of Salmonella typhimurium. , 1995, The EMBO journal.

[10]  R. Hengge-aronis,et al.  Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. , 1999, Current opinion in microbiology.

[11]  A. Luttinger,et al.  The twisted ‘life’ of DNA in the cell: bacterial topoisomerases , 1995, Molecular microbiology.

[12]  R. Hengge-aronis,et al.  Identification of a central regulator of stationary‐phase gene expression in Escherichia coli , 1991, Molecular microbiology.

[13]  W Keck,et al.  Gene expression changes triggered by exposure of Haemophilus influenzae to novobiocin or ciprofloxacin: combined transcription and translation analysis. , 2001, Genome research.

[14]  R. Hengge-aronis,et al.  Posttranscriptional osmotic regulation of the sigma(s) subunit of RNA polymerase in Escherichia coli , 1996, Journal of bacteriology.

[15]  G. Church,et al.  RNA expression analysis using a 30 base pair resolution Escherichia coli genome array , 2000, Nature Biotechnology.

[16]  N. Fujita,et al.  A Carboxy-Terminal 16-Amino-Acid Region of ς38 ofEscherichia coli Is Important for Transcription under High-Salt Conditions and Sigma Activities In Vivo , 2000, Journal of bacteriology.

[17]  K. Sekimizu,et al.  DnaK Heat Shock Protein of Escherichia coli Maintains the Negative Supercoiling of DNA against Thermal Stress* , 1996, The Journal of Biological Chemistry.

[18]  Ian R. Booth,et al.  A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli , 1988, Cell.

[19]  M. Gellert,et al.  Modulation of transcription by DNA supercoiling: a deletion analysis of the Escherichia coli gyrA and gyrB promoters. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Rohde,et al.  Thermoregulation in Yersinia enterocolitica is coincident with changes in DNA supercoiling , 1994, Molecular microbiology.

[21]  A. Maxwell DNA gyrase as a drug target. , 1997, Trends in microbiology.

[22]  M. Riley,et al.  Protein evolution viewed through Escherichia coli protein sequences: introducing the notion of a structural segment of homology, the module. , 1997, Journal of molecular biology.

[23]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[24]  Nicola J. Rinaldi,et al.  Serial Regulation of Transcriptional Regulators in the Yeast Cell Cycle , 2001, Cell.

[25]  G. Church,et al.  A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. , 1998, Journal of molecular biology.

[26]  P. Forterre,et al.  DNA topology and the thermal stress response, a tale from mesophiles and hyperthermophiles. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[27]  D. Lockhart,et al.  Expression monitoring by hybridization to high-density oligonucleotide arrays , 1996, Nature Biotechnology.

[28]  J. Lengeler,et al.  Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism , 1996, Journal of bacteriology.

[29]  M. Pallen,et al.  The HtrA family of serine proteases , 1997, Molecular microbiology.

[30]  A. Wolffe,et al.  DNA gyrase, CS7.4, and the cold shock response in Escherichia coli , 1992, Journal of bacteriology.

[31]  M. Inouye,et al.  Cold-shock response and cold-shock proteins. , 1999, Current opinion in microbiology.

[32]  Kenneth E. Rudd,et al.  EcoGene: a genome sequence database for Escherichia coli K-12 , 2000, Nucleic Acids Res..

[33]  L. Hsieh,et al.  Bacterial DNA supercoiling and [ATP]/[ADP] ratio: changes associated with salt shock , 1991, Journal of bacteriology.

[34]  P. Herron,et al.  Osmotic regulation of the Streptomyces lividans thiostrepton-inducible promoter, ptipA. , 2002, Microbiology.

[35]  C. Higgins,et al.  Uptake of cell wall peptides by Salmonella typhimurium and Escherichia coli , 1987, Journal of bacteriology.

[36]  E. Bremer,et al.  Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments , 1998, Archives of Microbiology.

[37]  H. Westerhoff,et al.  DNA supercoiling depends on the phosphorylation potential in Escherichia coli , 1996, Molecular microbiology.

[38]  Y. Tse‐Dinh,et al.  DNA supercoiling and bacterial adaptation: thermotolerance and thermoresistance. , 1997, Trends in microbiology.

[39]  S. Altuvia,et al.  Escherichia coli response to hydrogen peroxide: a role for DNA supercoiling, Topoisomerase I and Fis , 2000, Molecular microbiology.

[40]  R. Hengge-aronis,et al.  The nlpD gene is located in an operon with rpoS on the Escherichia coli chromosome and encodes a novel lipoprotein with a potential function in cell wall formation. , 1994, Molecular microbiology.

[41]  R. Hengge-aronis,et al.  The nIpD gene is located in an operon with rpoS on the Escherichia coli chromosome and encodes a novel lipoprotein with a potential function in ceil wall formation , 1994 .

[42]  G. Church,et al.  Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation , 1998, Nature Biotechnology.

[43]  A. Travers,et al.  DNA supercoiling and transcription in Escherichia coli: The FIS connection. , 2001, Biochimie.

[44]  Peter D. Karp,et al.  The EcoCyc Database , 2002, Nucleic Acids Res..

[45]  C. Higgins,et al.  Osmotic regulation of porin expression: a role for DNA supercoiling , 1989, Molecular microbiology.

[46]  K. Drlica,et al.  DNA gyrase, topoisomerase IV, and the 4-quinolones , 1997, Microbiology and molecular biology reviews : MMBR.

[47]  R. C. Johnson,et al.  The Fis protein: it's not just for DNA inversion anymore , 1992, Molecular microbiology.

[48]  A. Conter,et al.  Role of DNA supercoiling and rpoS sigma factor in the osmotic and growth phase-dependent induction of the gene osmE of Escherichia coli K12. , 1997, Journal of molecular biology.

[49]  G. Church,et al.  Identifying regulatory networks by combinatorial analysis of promoter elements , 2001, Nature Genetics.

[50]  M. Gellert,et al.  Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[51]  F. James Rohlf,et al.  Biometry: The Principles and Practice of Statistics in Biological Research , 1969 .

[52]  M. Riley,et al.  Interim report on genomics of Escherichia coli. , 2000, Annual review of microbiology.

[53]  A. Alice,et al.  DNA Supercoiling and Osmoresistance in Bacillus subtilis 168 , 1997, Current Microbiology.

[54]  C. Dorman,et al.  Flexible response: DNA supercoiling, transcription and bacterial adaptation to environmental stress. , 1996, Trends in microbiology.

[55]  J. Champoux DNA topoisomerases: structure, function, and mechanism. , 2001, Annual review of biochemistry.

[56]  K. Nakahigashi,et al.  Regulation of the heat-shock response. , 1999, Current opinion in microbiology.

[57]  G. Church,et al.  Exploring the DNA-binding specificities of zinc fingers with DNA microarrays , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[58]  N. Fujita,et al.  Promoter selectivity of Escherichia coli RNA polymerase E sigma 70 and E sigma 38 holoenzymes. Effect of DNA supercoiling. , 1996, The Journal of biological chemistry.

[59]  A. Travers,et al.  A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli , 1999, Molecular microbiology.

[60]  P. Neubauer,et al.  Expression of Escherichia coli Glutaredoxin 2 Is Mainly Regulated by ppGpp and ςS * , 2002, The Journal of Biological Chemistry.

[61]  M. Valvano,et al.  Molecular cloning of the Haemophilus influenzae gmhA (lpcA) gene encoding a phosphoheptose isomerase required for lipooligosaccharide biosynthesis , 1996, Journal of bacteriology.

[62]  David Botstein,et al.  Promoter-specific binding of Rap1 revealed by genome-wide maps of protein–DNA association , 2001, Nature Genetics.