Natural human gestures classification using multisensor data

We study the two stage classification approach using Hidden Markov Models and Bayesian Network to natural hand gesture classification. We analyze 22 natural gestures with three sets of sensors (finger bend, accelerometers and pitch/roll), classifying each of them separately, and then combining the results using Bayesian classifier. This method achieves significant improvement over single stage classifier trained on the whole multisensor sequences.

[1]  Jacob Eisenstein,et al.  Visual and linguistic information in gesture classification , 2006 .

[2]  Jian Cheng,et al.  Bayesian Co-Boosting for Multi-modal Gesture Recognition , 2014, Gesture Recognition.

[3]  Elena Mugellini,et al.  Gesture recognition corpora and tools: A scripted ground truthing method , 2015, Comput. Vis. Image Underst..

[4]  Sébastien Marcel,et al.  Hand gesture recognition using input-output hidden Markov models , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[5]  Przemyslaw Glomb,et al.  Estimation of the number of states for gesture recognition with Hidden Markov Models based on the number of critical points in time sequence , 2013, Pattern Recognit. Lett..

[6]  Justine Cassell,et al.  Temporal classification of natural gesture and application to video coding , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Jochen Triesch,et al.  Robust classification of hand postures against complex backgrounds , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[8]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Ludmila I. Kuncheva,et al.  A Theoretical Study on Six Classifier Fusion Strategies , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Michal Romaszewski,et al.  Choosing and Modeling the Hand Gesture Database for a Natural User Interface , 2011, Gesture Workshop.

[11]  D. Ruta,et al.  An Overview of Classifier Fusion Methods , 2000 .

[12]  L. Cooper,et al.  When Networks Disagree: Ensemble Methods for Hybrid Neural Networks , 1992 .

[13]  Piotr Gawron,et al.  Eigengestures for Natural Human Computer Interface , 2011, ICMMI.

[14]  James C. Bezdek,et al.  Decision templates for multiple classifier fusion: an experimental comparison , 2001, Pattern Recognit..

[15]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.