Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects
暂无分享,去创建一个
[1] D. Perepelitsa,et al. Path integrals in quantum mechanics , 2013 .
[2] T. Hughes,et al. Signals and systems , 2006, Genome Biology.
[3] B. Iyer,et al. Erratum: Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing: The nonspinning case [Phys. Rev. D 71, 084008 (2005)] , 2005 .
[4] B. Iyer,et al. Parameter estimation of inspiralling compact binaries using 3.5 post-Newtonian gravitational wave phasing : The nonspinning case , 2004, gr-qc/0411146.
[5] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[6] T. Damour,et al. Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order. , 2004, Physical review letters.
[7] N. Christensen,et al. Metropolis-Hastings algorithm for extracting periodic gravitational wave signals from laser interferometric detector data , 2004, gr-qc/0402038.
[8] M. Tribus,et al. Probability theory: the logic of science , 2003 .
[9] N. Makris,et al. Necessary conditions for a maximum likelihood estimate to become asymptotically unbiased and attain the Cramer-Rao lower bound. II. Range and depth localization of a sound source in an ocean waveguide. , 2002, The Journal of the Acoustical Society of America.
[10] T. Damour,et al. Comparison of search templates for gravitational waves from binary inspiral: 3.5PN update , 2002, gr-qc/0207021.
[11] William H. Press,et al. Numerical recipes in C , 2002 .
[12] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[13] N. Makris,et al. Necessary conditions for a maximum likelihood estimate to become asymptotically unbiased and attain the Cramer-Rao lower bound. Part I. General approach with an application to time-delay and Doppler shift estimation. , 2001, The Journal of the Acoustical Society of America.
[14] T. Damour,et al. A Comparison of search templates for gravitational waves from binary inspiral , 2000, gr-qc/0010009.
[15] A. Rukhin. Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.
[16] Nelson Christensen,et al. Markov chain Monte Carlo methods for Bayesian gravitational radiation data analysis , 1998 .
[17] A. Vecchio,et al. Bayesian bounds on parameter extraction accuracy for compact coalescing binary gravitational wave signals , 1997, gr-qc/9705064.
[18] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[19] Balasubramanian,et al. Erratum: Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters , 1996, Physical review. D, Particles and fields.
[20] C. Will,et al. Gravitational waves from inspiraling compact binaries: Parameter estimation using second-post-Newtonian waveforms. , 1995, Physical review. D, Particles and fields.
[21] Leonard Parker,et al. MathTensor - a system for doing Tensor analysis by computer , 1994 .
[22] Flanagan,et al. Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.
[23] D. Cox,et al. Inference and Asymptotics , 1994 .
[24] S. Kay. Fundamentals of statistical signal processing: estimation theory , 1993 .
[25] Wiseman,et al. Spin effects in the inspiral of coalescing compact binaries. , 1992, Physical review. D, Particles and fields.
[26] Finn,et al. Detection, measurement, and gravitational radiation. , 1992, Physical review. D, Particles and fields.
[27] Joshua R. Smith,et al. LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.
[28] E. T. Jaynes,et al. Probability Theory as Logic , 1990 .
[29] Marvin H. J. Guber. Bayesian Spectrum Analysis and Parameter Estimation , 1988 .
[30] G. Larry Bretthorst,et al. Excerpts from Bayesian Spectrum Analysis and Parameter Estimation , 1988 .
[31] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[32] Albert A. Mullin,et al. Extraction of signals from noise , 1970 .
[33] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.