A metal-free organic–inorganic aqueous flow battery

[1]  M. Mench Flow Batteries I , 2015 .

[2]  C. Low,et al.  Progress in redox flow batteries, remaining challenges and their applications in energy storage , 2012 .

[3]  Zunyao Wang,et al.  Investigation on Intramolecular Hydrogen Bond and Some Thermodynamic Properties of Polyhydroxylated Anthraquinones , 2012 .

[4]  Michael J. Aziz,et al.  A high power density, high efficiency hydrogen–chlorine regenerative fuel cell with a low precious metal content catalyst , 2012, 1206.2883.

[5]  Lelia Cosimbescu,et al.  Anthraquinone with tailored structure for a nonaqueous metal-organic redox flow battery. , 2012, Chemical communications.

[6]  Michael J. Aziz,et al.  Electricity storage for intermittent renewable sources , 2012 .

[7]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[8]  Maria Skyllas-Kazacos,et al.  Progress in Flow Battery Research and Development , 2011 .

[9]  Junmei Wang,et al.  Recent advances on aqueous solubility prediction. , 2011, Combinatorial chemistry & high throughput screening.

[10]  Partha Sarathi Guin,et al.  Electrochemical Reduction of Quinones in Different Media: A Review , 2011 .

[11]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[12]  Tetsuo Sakai,et al.  High-capacity organic positive-electrode material based on a benzoquinone derivative for use in rechargeable lithium batteries , 2010 .

[13]  Garry R. Buettner,et al.  Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide. , 2010, Free radical biology & medicine.

[14]  T. Iitaka,et al.  Failure of Conventional Density Functionals for the Prediction of Molecular Crystal Polymorphism: A Quantum Monte Carlo Study , 2010, The Journal of Physical Chemistry Letters.

[15]  J. R. T. Johnsson Wass,et al.  Quantum chemical modeling of the reduction of quinones. , 2006, The journal of physical chemistry. A.

[16]  Peter E. Bl Projector-Augmented Wave Method: An introduction , 2003 .

[17]  R. Forster,et al.  Protonation reactions of anthraquinone-2,7-disulphonic acid in solution and within monolayers , 2001 .

[18]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[19]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[20]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[21]  B. Honig,et al.  New Model for Calculation of Solvation Free Energies: Correction of Self-Consistent Reaction Field Continuum Dielectric Theory for Short-Range Hydrogen-Bonding Effects , 1996 .

[22]  B. Honig,et al.  Accurate First Principles Calculation of Molecular Charge Distributions and Solvation Energies from Ab Initio Quantum Mechanics and Continuum Dielectric Theory , 1994 .

[23]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[24]  G. Kelsall,et al.  Redox chemistry of H2S oxidation by the British Gas Stretford Process Part III: Electrochemical behaviour of anthraquinone 2,7 disulphonate in alkaline electrolytes , 1993 .

[25]  Louette R. Johnson Lutjens Research , 2006 .

[26]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[27]  J. McBreen,et al.  Transport Properties of Nafion Membranes in Electrochemically Regenerative Hydrogen/Halogen Cells , 1979 .

[28]  N. Trinajstic,et al.  Ground states of conjugated molecules—XIV: Redox potentials of quinones , 1965 .

[29]  N. Trinajstic,et al.  Ground states of conjugated molecules—XVIII : Azepines and oxepines , 1970 .

[30]  L. Fieser,et al.  AN ELECTROCHEMICAL STUDY OF THE REVERSIBLE REDUCTION OF ORGANIC COMPOUNDS1 , 1922 .

[31]  M. L. Crossley THE SEPARATION OF MONO-β-, 2,6- AND 2,7-SULFONIC ACIDS OF ANTHRAQUINONE. , 1915 .