Application of hierarchical matrices for computing the Karhunen–Loève expansion

Realistic mathematical models of physical processes contain uncertainties. These models are often described by stochastic differential equations (SDEs) or stochastic partial differential equations (SPDEs) with multiplicative noise. The uncertainties in the right-hand side or the coefficients are represented as random fields. To solve a given SPDE numerically one has to discretise the deterministic operator as well as the stochastic fields. The total dimension of the SPDE is the product of the dimensions of the deterministic part and the stochastic part. To approximate random fields with as few random variables as possible, but still retaining the essential information, the Karhunen–Loève expansion (KLE) becomes important. The KLE of a random field requires the solution of a large eigenvalue problem. Usually it is solved by a Krylov subspace method with a sparse matrix approximation. We demonstrate the use of sparse hierarchical matrix techniques for this. A log-linear computational cost of the matrix-vector product and a log-linear storage requirement yield an efficient and fast discretisation of the random fields presented.

[1]  Jürgen Potthoff,et al.  White Noise: An Infinite Dimensional Calculus , 1993 .

[2]  Mario Bebendorf,et al.  Approximation of boundary element matrices , 2000, Numerische Mathematik.

[3]  Ronald Kriemann,et al.  Hierarchical Matrices Based on a Weak Admissibility Criterion , 2004, Computing.

[4]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[5]  Pol D. Spanos,et al.  Spectral Stochastic Finite-Element Formulation for Reliability Analysis , 1991 .

[6]  Boris N. Khoromskij,et al.  Hierarchical Kronecker tensor-product approximations , 2005, J. Num. Math..

[7]  Elisabeth Ullmann,et al.  Computational aspects of the stochastic finite element method , 2007 .

[8]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[9]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[10]  D. O’Leary,et al.  Efficient iterative algorithms for the stochastic finite element method with application to acoustic scattering , 2005 .

[11]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[12]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[14]  Mario Bebendorf,et al.  Stabilized rounded addition of hierarchical matrices , 2007, Numer. Linear Algebra Appl..

[15]  Andreas Keese,et al.  Numerical Solution of Systems with Stochastic Uncertainties : A General Purpose Framework for Stochastic Finite Elements , 2004 .

[16]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[17]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[18]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[19]  Sergej Rjasanow,et al.  Adaptive Low-Rank Approximation of Collocation Matrices , 2003, Computing.

[20]  R. Ghanem,et al.  Iterative solution of systems of linear equations arising in the context of stochastic finite elements , 2000 .

[21]  Christoph Schwab,et al.  Sparse finite elements for elliptic problems with stochastic loading , 2003, Numerische Mathematik.

[22]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[23]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[24]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[25]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[26]  Kesheng Wu,et al.  Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems , 2000, SIAM J. Matrix Anal. Appl..

[27]  Boris N. Khoromskij,et al.  A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.

[28]  Christoph Schwab,et al.  Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients , 2007 .

[29]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[30]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[31]  Hermann G. Matthies,et al.  Uncertainty Quantification with Stochastic Finite Elements , 2007 .

[32]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[33]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[34]  Stefan Vandewalle,et al.  Fourier mode analysis of multigrid methods for partial differential equations with random coefficients , 2007, J. Comput. Phys..

[35]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[36]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[37]  S. Goreinov,et al.  A Theory of Pseudoskeleton Approximations , 1997 .

[38]  Steffen Börm,et al.  Hybrid cross approximation of integral operators , 2005, Numerische Mathematik.

[39]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[40]  Bernt Øksendal,et al.  WHITE NOISE. AN INFINITE DIMENSIONAL CALCULUS , 1995 .

[41]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[42]  W. Hackbusch Integral Equations: Theory and Numerical Treatment , 1995 .

[43]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[44]  Wolfgang Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[45]  Christoph Schwab,et al.  Sparse Finite Elements for Stochastic Elliptic Problems – Higher Order Moments , 2003, Computing.