Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences

Summary. The solution of large Toeplitz systems with nonnegative generating functions by multigrid methods was proposed in previous papers [13,14,22]. The technique was modified in [6,36] and a rigorous proof of convergence of the TGM (two-grid method) was given in the special case where the generating function has only a zero at $x^0=0$ of order at most two. Here, by extending the latter approach, we perform a complete analysis of convergence of the TGM under the sole assumption that f is nonnegative and with a zero at $x^0=0$ of finite order. An extension of the same analysis in the multilevel case and in the case of finite difference matrix sequences discretizing elliptic PDEs with nonconstant coefficients and of any order is then discussed.

[1]  Paola Favati,et al.  On a matrix algebra related to the discrete Hartley transform , 1993 .

[2]  Gabriele Steidl,et al.  Preconditioners for Ill-Conditioned Toeplitz Systems Constructed from Positive Kernels , 2001, SIAM J. Sci. Comput..

[3]  Giuseppe Fiorentino,et al.  C. G. preconditioning for Toeplitz matrices , 1993 .

[4]  Stefano Serra Capizzano,et al.  Spectral and structural analysis of high precision finite difference matrices for elliptic operators , 1999 .

[5]  Gene H. Golub,et al.  Matrix computations , 1983 .

[6]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[7]  Stefano Serra,et al.  On the extreme eigenvalues of hermitian (block) toeplitz matrices , 1998 .

[8]  Bernd Silbermann,et al.  Invertibility And Asymptotics Of Toeplitz Matrices , 1990 .

[9]  A. Böttcher,et al.  On the condition numbers of large semidefinite Toeplitz matrices , 1998 .

[10]  Raymond H. Chan,et al.  Multigrid Method for Ill-Conditioned Symmetric Toeplitz Systems , 1998, SIAM J. Sci. Comput..

[11]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[12]  Dario Bini,et al.  SPECTRAL AND COMPUTATIONAL PROPERTIES OF BAND SYMMETRIC TOEPLITZ MATRICES , 1983 .

[13]  Fabio Di Benedetto,et al.  Analysis of Preconditioning Techniques for Ill-Conditioned Toeplitz Matrices , 1995, SIAM J. Sci. Comput..

[14]  Stefano Serra Capizzano,et al.  Korovkin theorems and linear positive Gram matrix algebra approximations of Toeplitz matrices , 1998 .

[15]  Stefano Serra Capizzano,et al.  Toeplitz Preconditioners Constructed from Linear Approximation Processes , 1999, SIAM J. Matrix Anal. Appl..

[16]  S. Capizzano Spectral behavior of matrix sequences and discretized boundary value problems , 2001 .

[17]  Stefano Serra,et al.  Multigrid methods for toeplitz matrices , 1991 .

[18]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[19]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[20]  Eugene E. Tyrtyshnikov,et al.  Spectra of multilevel toeplitz matrices: Advanced theory via simple matrix relationships , 1998 .

[21]  S. Serra Capizzano,et al.  Some theorems on linear positive operators and functionals and their applications , 2000 .

[22]  Stefano Serra How to Choose the Best Iterative Strategy for Symmetric Toeplitz Systems , 1999 .

[23]  G. Strang,et al.  Toeplitz equations by conjugate gradients with circulant preconditioner , 1989 .

[24]  S. Serra New PCG based algorithms for the solution of Hermitian Toeplitz systems , 1995 .

[25]  Raymond H. Chan,et al.  A note on the convergence of the two-grid method for Toeplitz systems☆ , 1997 .

[26]  Stefano Serra Capizzano The rate of convergence of Toeplitz based PCG methods for second order nonlinear boundary value problems , 1999, Numerische Mathematik.

[27]  Stefano Serra Capizzano,et al.  A Korovkin-type theory for finite Toeplitz operators via matrix algebras , 1999, Numerische Mathematik.

[28]  Stefano Serra Capizzano,et al.  Superlinear PCG methods for symmetric Toeplitz systems , 1999, Math. Comput..

[29]  S. Serra,et al.  Multi-iterative methods , 1993 .

[30]  Stefano Serra Capizzano,et al.  Multigrid Methods for Symmetric Positive Definite Block Toeplitz Matrices with Nonnegative Generating Functions , 1996, SIAM J. Sci. Comput..

[31]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[32]  Giuseppe Fiorentino,et al.  Multigrid methods for indefinite Toeplitz matrices , 1996 .

[33]  Stefano Serra,et al.  Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptotically ill-conditioned positive definite Toeplitz systems , 1997 .

[34]  Dario Bini,et al.  A new preconditioner for the parallel solution of positive definite Toeplitz systems , 1990, SPAA '90.

[35]  E. E. Tyrtyshnikov A unifying approach to some old and new theorems on distribution and clustering , 1996 .