Competitively chasing convex bodies
暂无分享,去创建一个
Yin Tat Lee | Yuanzhi Li | Sébastien Bubeck | Mark Sellke | Sébastien Bubeck | Yuanzhi Li | Y. Lee | Mark Sellke
[1] Santosh S. Vempala,et al. Solving convex programs by random walks , 2004, JACM.
[2] James R. Lee,et al. Fusible HSTs and the Randomized k-Server Conjecture , 2017, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).
[3] Miklós Simonovits,et al. Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..
[4] Nathan Linial,et al. On convex body chasing , 1993, Discret. Comput. Geom..
[5] Lachlan L. H. Andrew,et al. Dynamic Right-Sizing for Power-Proportional Data Centers , 2011, IEEE/ACM Transactions on Networking.
[6] Yin Tat Lee,et al. A Nearly-Linear Bound for Chasing Nested Convex Bodies , 2018, SODA.
[7] Yin Tat Lee,et al. Chasing Nested Convex Bodies Nearly Optimally , 2018, SODA.
[8] Joseph Naor,et al. Competitive Analysis via Regularization , 2014, SODA.
[9] Lyle A. McGeoch,et al. Competitive Algorithms for Server Problems , 1990, J. Algorithms.
[10] Nikhil Bansal,et al. Nested Convex Bodies are Chaseable , 2017, Algorithmica.
[11] James R. Lee,et al. k-server via multiscale entropic regularization , 2017, STOC.
[12] Kirk Pruhs,et al. Chasing Convex Bodies and Functions , 2016, LATIN.
[13] Adam Wierman,et al. Smoothed Online Convex Optimization in High Dimensions via Online Balanced Descent , 2018, COLT.
[14] Elad Hazan,et al. Introduction to Online Convex Optimization , 2016, Found. Trends Optim..