Probabilistic modeling of single-trial fMRI data

Describes a probabilistic framework for modeling single-trial functional magnetic resonance (fMR) images based on a parametric model for the hemodynamic response and Markov random field (MRF) image models. The model is fitted to image data by maximizing a lower bound on the log likelihood. The result is an approximate maximum a posteriori estimate of the joint distribution over the model parameters and pixel labels. Examples show how this technique can used to segment two-dimensional (2-D) fMR images, or parts thereof, into regions with different characteristics of their hemodynamic response.

[1]  H. Stødkilde-Jørgensen,et al.  State Space Models for Physiological Noise in fMRI Time Series , 1998, NeuroImage.

[2]  F Kruggel,et al.  Modeling the hemodynamic response in single‐trial functional MRI experiments , 1999, Magnetic resonance in medicine.

[3]  Karl J. Friston,et al.  Event‐related f MRI , 1997, Human brain mapping.

[4]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[5]  E C Wong,et al.  Processing strategies for time‐course data sets in functional mri of the human brain , 1993, Magnetic resonance in medicine.

[6]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[7]  R. Buckner,et al.  Human Brain Mapping 6:373–377(1998) � Event-Related fMRI and the Hemodynamic Response , 2022 .

[8]  Xavier Descombes,et al.  fMRI Signal Restoration Using a Spatio-Temporal Markov Random Field Preserving Transitions , 1998, NeuroImage.

[9]  Donald Geman,et al.  Application of the Gibbs distribution to image segmentation , 1984, ICASSP.

[10]  E. DeYoe,et al.  Reduction of physiological fluctuations in fMRI using digital filters , 1996, Magnetic resonance in medicine.

[11]  Jun Zhang,et al.  The Mean Field Theory In EM Procedures For Markov Random Fields , 1991, Proceedings of the Seventh Workshop on Multidimensional Signal Processing.

[12]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[13]  A. Dove,et al.  Prefrontal cortex activation in task switching: an event-related fMRI study. , 2000, Brain research. Cognitive brain research.

[14]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[15]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[16]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[17]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[18]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  D. Y. von Cramon,et al.  Auditory Sentence Comprehension: Different BOLD patterns modulated by task demands as revealed by a ‘single-trial’ fMRI-study , 1998, NeuroImage.

[20]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R B Buxton,et al.  Probabilistic analysis of functional magnetic resonance imaging data , 1998, Magnetic resonance in medicine.

[22]  Karl J. Friston,et al.  Analysis of functional MRI time‐series , 1994, Human Brain Mapping.

[23]  J. Rajapakse,et al.  Human Brain Mapping 6:283–300(1998) � Modeling Hemodynamic Response for Analysis of Functional MRI Time-Series , 2022 .

[24]  Wesley E. Snyder,et al.  Segmentation of magnetic resonance images using mean field annealing , 1992, Image Vis. Comput..

[25]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[26]  Karl J. Friston,et al.  Event-related fMRI , 1997 .

[27]  Markus Svensén,et al.  Markov Random Field Modelling of fMRI Data Using a Mean Field EM-algorithm , 1999, EMMCVPR.

[28]  A. Dale,et al.  Late Onset of Anterior Prefrontal Activity during True and False Recognition: An Event-Related fMRI Study , 1997, NeuroImage.

[29]  José M. N. Leitão,et al.  On Fitting Mixture Models , 1999, EMMCVPR.

[30]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[31]  Scott L. Zeger,et al.  Non‐linear Fourier Time Series Analysis for Human Brain Mapping by Functional Magnetic Resonance Imaging , 1997 .

[32]  E. Bullmore,et al.  Statistical methods of estimation and inference for functional MR image analysis , 1996, Magnetic resonance in medicine.