Towards minimal assumptions for the infimal convolution regularization
暂无分享,去创建一个
[1] K. Nomizu,et al. The existence of complete Riemannian metrics , 1961 .
[2] I. Ekeland. On the variational principle , 1974 .
[3] R. Rockafellar,et al. Integral functionals, normal integrands and measurable selections , 1976 .
[4] J. Penot. Calcul sous-differentiel et optimisation , 1978 .
[5] D. Bertsekas. Convexification procedures and decomposition methods for nonconvex optimization problems , 1979 .
[6] Simon Fitzpatrick,et al. Metric projections and the differentiability of distance functions , 1980, Bulletin of the Australian Mathematical Society.
[7] I. Ekeland,et al. On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface , 1980 .
[8] J. Hiriart-Urruty. Extension of Lipschitz functions , 1980 .
[9] Jean-Paul Penot. A characterization of tangential regularity , 1981 .
[10] R. Rockafellar. Favorable Classes of Lipschitz Continuous Functions in Subgradient Optimization , 1981 .
[11] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[12] R. Wets,et al. A convergence theory for saddle functions , 1983 .
[13] H. Attouch. Variational convergence for functions and operators , 1984 .
[14] R. Rockafellar,et al. Variational systems, an introduction , 1984 .
[15] Michel Volle. Conjugaison par tranches , 1985 .
[16] P. Lions,et al. A remark on regularization in Hilbert spaces , 1986 .
[17] Jean-Paul Penot,et al. Approximation and decomposition properties of some classes of locally D.C. functions , 1988, Math. Program..
[18] Mireille L. Bougeard,et al. Morse theory for some lower-C2 functions in finite dimension , 1988, Math. Program..