Towards minimal assumptions for the infimal convolution regularization

[1]  K. Nomizu,et al.  The existence of complete Riemannian metrics , 1961 .

[2]  I. Ekeland On the variational principle , 1974 .

[3]  R. Rockafellar,et al.  Integral functionals, normal integrands and measurable selections , 1976 .

[4]  J. Penot Calcul sous-differentiel et optimisation , 1978 .

[5]  D. Bertsekas Convexification procedures and decomposition methods for nonconvex optimization problems , 1979 .

[6]  Simon Fitzpatrick,et al.  Metric projections and the differentiability of distance functions , 1980, Bulletin of the Australian Mathematical Society.

[7]  I. Ekeland,et al.  On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface , 1980 .

[8]  J. Hiriart-Urruty Extension of Lipschitz functions , 1980 .

[9]  Jean-Paul Penot A characterization of tangential regularity , 1981 .

[10]  R. Rockafellar Favorable Classes of Lipschitz Continuous Functions in Subgradient Optimization , 1981 .

[11]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[12]  R. Wets,et al.  A convergence theory for saddle functions , 1983 .

[13]  H. Attouch Variational convergence for functions and operators , 1984 .

[14]  R. Rockafellar,et al.  Variational systems, an introduction , 1984 .

[15]  Michel Volle Conjugaison par tranches , 1985 .

[16]  P. Lions,et al.  A remark on regularization in Hilbert spaces , 1986 .

[17]  Jean-Paul Penot,et al.  Approximation and decomposition properties of some classes of locally D.C. functions , 1988, Math. Program..

[18]  Mireille L. Bougeard,et al.  Morse theory for some lower-C2 functions in finite dimension , 1988, Math. Program..