Critical points at infinity for analytic combinatorics

On complex algebraic varieties, height functions arising in combinatorial applications fail to be proper. This complicates the description and computation via Morse theory of key topological invariants. Here we establish checkable conditions under which the behavior at infinity may be ignored, and the usual theorems of classical and stratified Morse theory may be applied.

[1]  Phillip A. Griffiths,et al.  On the Periods of Certain Rational Integrals: II , 1969 .

[2]  Stephen Melczer,et al.  Analytic Combinatorics in Several Variables : Effective Asymptotics and Lattice Path Enumeration. (Combinatoire analytique en plusieurs variables : asymptotique efficace et énumération de chemin de treillis) , 2017, ArXiv.

[3]  Alin Bostan,et al.  Algebraic diagonals and walks: Algorithms, bounds, complexity , 2015, J. Symb. Comput..

[4]  Bjarne Knudsen,et al.  RNA secondary structure prediction using stochastic context-free grammars and evolutionary history , 1999, Bioinform..

[5]  Torin Greenwood,et al.  Asymptotics of bivariate analytic functions with algebraic singularities , 2016, J. Comb. Theory, Ser. A.

[6]  H. O. Erdin Characteristic Classes , 2004 .

[7]  Philippe Flajolet,et al.  An introduction to the analysis of algorithms , 1995 .

[8]  Stephen Melczer,et al.  Diagonal asymptotics for symmetric rational functions via ACSV , 2018, AofA.

[9]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[10]  Stephen Melczer,et al.  Asymptotics of multivariate sequences in the presence of a lacuna , 2019, Annales de l’Institut Henri Poincaré D.

[11]  Bernard Teissier,et al.  Varietes polaires II Multiplicites polaires, sections planes, et conditions de whitney , 1982 .

[12]  M. Goresky,et al.  Stratified Morse theory , 1988 .

[13]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[14]  Mark C. Wilson,et al.  Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions , 2005, SIAM Rev..

[15]  Timothy DeVries Algorithms for Bivariate Singularity Analysis , 2011 .

[16]  Gerald Leonard Gordon,et al.  The residue calculus in several complex variables , 1975 .

[17]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[18]  Askold Khovanskii,et al.  Newton polyhedra and toroidal varieties , 1977 .

[19]  Yuliy Baryshnikov,et al.  Asymptotics of multivariate sequences, part III: Quadratic points , 2008 .

[20]  O. K. Yoon,et al.  Introduction to differentiable manifolds , 1993 .

[21]  Yuliy Baryshnikov,et al.  Two-dimensional Quantum Random Walk , 2008, Journal of Statistical Physics.

[22]  Mourad E. H. Ismail,et al.  Three routes to the exact asymptotics for the one-dimensional quantum walk , 2003, quant-ph/0303105.

[23]  Robin Pemantle,et al.  Quantum random walk on the integer lattice: examples and phenomena , 2009, 0903.2967.

[24]  T. Mostowski,et al.  Complexity of the Computation of the Canonical Whitney Stratification of an Algebraic Set in Cn , 1991, AAECC.

[25]  Andrea L. Bertozzi,et al.  Multidimensional Residues, Generating Functions, and Their Application to Queueing Networks , 1993, SIAM Rev..

[26]  D. Klarner,et al.  The diagonal of a double power series , 1971 .

[27]  J. W. Bruce,et al.  STRATIFIED MORSE THEORY (Ergebnisse der Mathematik und ihrer Grenzgebiete. (3) 14) , 1989 .

[28]  Mikael Passare,et al.  Laurent determinants and arrangements of hyperplane amoebas , 2000 .

[29]  Mark C. Wilson,et al.  Analytic Combinatorics in Several Variables , 2013 .

[30]  Doron Zeilberger,et al.  On Elementary Methods in Positivity Theory , 1983 .

[31]  Robin Pemantle,et al.  Quantum random walks in one dimension via generating functions , 2007 .

[32]  Christine E. Heitsch,et al.  Asymptotic distribution of motifs in a stochastic context-free grammar model of RNA folding , 2012, Journal of Mathematical Biology.