Big signals from small particles: regulation of cell signaling pathways by nanoparticles.

Pathways by Nanoparticles Jens Rauch,† Walter Kolch,*,†,‡ Sophie Laurent, and Morteza Mahmoudi* †Systems Biology Ireland and ‡Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, B-7000 Mons, Belgium Nanotechnology Research Center and Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

[1]  George M Whitesides,et al.  Nanoscience, nanotechnology, and chemistry. , 2005, Small.

[2]  Kazuhiko Kinosita,et al.  Direct observation of the rotation of F1-ATPase , 1997, Nature.

[3]  Warren C W Chan,et al.  Effect of gold nanoparticle aggregation on cell uptake and toxicity. , 2011, ACS nano.

[4]  H. Kampinga,et al.  Nuclear matrix as a target for hyperthermic killing of cancer cells. , 1998, Cell stress & chaperones.

[5]  P Wust,et al.  Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique , 2005, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[6]  Charles M. Lieber,et al.  Nanomaterials for Neural Interfaces , 2009 .

[7]  Xiaohu Gao,et al.  Multifunctional Quantum Dots for Personalized Medicine. , 2009, Nano today.

[8]  G. Eggeler,et al.  Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles. , 2011, Acta biomaterialia.

[9]  J. Kopeček,et al.  Cytoplasmic delivery and nuclear targeting of synthetic macromolecules. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[10]  K. Donaldson,et al.  Signs of stress , 2006, Nature nanotechnology.

[11]  Morteza Mahmoudi,et al.  Effect of nanoparticles on the cell life cycle. , 2011, Chemical reviews.

[12]  Ben Fabry,et al.  Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. , 2003, American journal of physiology. Cell physiology.

[13]  I. Zuhorn,et al.  Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. , 2004, The Biochemical journal.

[14]  Milan Mrksich,et al.  A conformation- and ion-sensitive plasmonic biosensor. , 2011, Nano letters.

[15]  Anjan Kr Dasgupta,et al.  Cell selective response to gold nanoparticles. , 2007, Nanomedicine : nanotechnology, biology, and medicine.

[16]  J. Lloyd,et al.  Pinocytosis and phagocytosis: the effect of size of a particulate substrate on its mode of capture by rat peritoneal macrophages cultured in vitro. , 1986, Biochimica et biophysica acta.

[17]  David S. Harburger,et al.  Integrin signalling at a glance , 2009, Journal of Cell Science.

[18]  Juan B. Blanco-Canosa,et al.  Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. , 2011, ACS nano.

[19]  Donald E Ingber,et al.  Nanomagnetic actuation of receptor-mediated signal transduction. , 2008, Nature nanotechnology.

[20]  Sara Linse,et al.  Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles , 2007, Proceedings of the National Academy of Sciences.

[21]  Vincent Castranova,et al.  Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling , 2009, Particle and Fibre Toxicology.

[22]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[23]  Kenneth A. Dawson,et al.  Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. , 2011, Nature nanotechnology.

[24]  Steven A Curley,et al.  Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence , 2006, Proceedings of the National Academy of Sciences.

[25]  Katharina Landfester,et al.  Interaction of nanoparticles with cells. , 2009, Biomacromolecules.

[26]  M. Mahmoudi,et al.  Protein-nanoparticle interactions: opportunities and challenges. , 2011, Chemical reviews.

[27]  L. Lechuga,et al.  LSPR-based nanobiosensors , 2009 .

[28]  Janet Rossant,et al.  Endothelial cells and VEGF in vascular development , 2005, Nature.

[29]  Fernando Rodrigues-Lima,et al.  Nanoparticles: molecular targets and cell signalling , 2011, Archives of Toxicology.

[30]  Sabine Neuss,et al.  Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. , 2009, Small.

[31]  Vahid Serpooshan,et al.  Hydraulic permeability of multilayered collagen gel scaffolds under plastic compression-induced unidirectional fluid flow. , 2013, Acta biomaterialia.

[32]  Qingbo Xu,et al.  Activation of Mitogen-activated Protein Kinase by HO , 1996, The Journal of Biological Chemistry.

[33]  Martin Frenz,et al.  Mechanisms of nanoparticle-mediated photomechanical cell damage , 2012, Biomedical optics express.

[34]  P. Fatouros,et al.  Conjugation of functionalized gadolinium metallofullerenes with IL-13 peptides for targeting and imaging glial tumors. , 2011, Nanomedicine.

[35]  Jonathan S Dordick,et al.  Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[36]  Shouheng Sun,et al.  Recent advances in syntheses and therapeutic applications of multifunctional porous hollow nanoparticles , 2010 .

[37]  Pratim Biswas,et al.  Does nanoparticle activity depend upon size and crystal phase? , 2008, Nanotoxicology.

[38]  Maciej Zborowski,et al.  Quantitative intracellular magnetic nanoparticle uptake measured by live cell magnetophoresis , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[39]  R. Fischer,et al.  A quantitative validation of fluorophore-labelled cell-permeable peptide conjugates: fluorophore and cargo dependence of import. , 2002, Biochimica et biophysica acta.

[40]  Naomi J Halas,et al.  Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. , 2009, Nano letters.

[41]  Jinhee Choi,et al.  Silver nanoparticles down-regulate Nrf2-mediated 8-oxoguanine DNA glycosylase 1 through inactivation of extracellular regulated kinase and protein kinase B in human Chang liver cells. , 2011, Toxicology letters.

[42]  Aniruddh Solanki,et al.  Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. , 2008, Nanomedicine.

[43]  R. Weissleder,et al.  Cell-specific targeting of nanoparticles by multivalent attachment of small molecules , 2005, Nature Biotechnology.

[44]  Hakho Lee,et al.  Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection. , 2010, Nature nanotechnology.

[45]  Warren C W Chan,et al.  The effect of nanoparticle size, shape, and surface chemistry on biological systems. , 2012, Annual review of biomedical engineering.

[46]  R D Kamm,et al.  Force-induced focal adhesion translocation: effects of force amplitude and frequency. , 2004, American journal of physiology. Cell physiology.

[47]  W. Mark Saltzman,et al.  Synthetic DNA delivery systems , 2000, Nature Biotechnology.

[48]  Weibo Cai,et al.  Nanoplatforms for targeted molecular imaging in living subjects. , 2007, Small.

[49]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[50]  Stuart K. Calderwood,et al.  Heat shock proteins: Stress proteins with Janus-like properties in cancer , 2008, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[51]  J. Dobson,et al.  Magnetic micro- and nanoparticle mediated activation of mechanosensitive ion channels. , 2005, Medical engineering & physics.

[52]  D. Ingber,et al.  Binding of urokinase to plasminogen activator inhibitor type-1 mediates cell adhesion and spreading. , 1997, Journal of cell science.

[53]  Steven M. Block,et al.  Transcription Against an Applied Force , 1995, Science.

[54]  Arezou A Ghazani,et al.  Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. , 2006, Nano letters.

[55]  Morteza Mahmoudi,et al.  Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. , 2011, Advances in colloid and interface science.

[56]  M. Glogauer,et al.  Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. , 1997, Journal of cell science.

[57]  Miriam V. Flores-Merino,et al.  Block copolymer nanostructures , 2008 .

[58]  Kristen K. Comfort,et al.  Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells. , 2011, ACS nano.

[59]  Sabine Neuss,et al.  Size-dependent cytotoxicity of gold nanoparticles. , 2007, Small.

[60]  Michael Karin,et al.  Reactive Oxygen Species Promote TNFα-Induced Death and Sustained JNK Activation by Inhibiting MAP Kinase Phosphatases , 2005, Cell.

[61]  Katsuhide Fujita,et al.  Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. , 2009, Chemical research in toxicology.

[62]  P. Wust,et al.  Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles , 1999 .

[63]  Matthew J. Paszek,et al.  Balancing forces: architectural control of mechanotransduction , 2011, Nature Reviews Molecular Cell Biology.

[64]  Jose R Peralta-Videa,et al.  Nanomaterials and the environment: a review for the biennium 2008-2010. , 2011, Journal of hazardous materials.

[65]  E. Wang,et al.  Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors , 2011 .

[66]  Shuming Nie,et al.  Bioconjugated quantum dots for in vivo molecular and cellular imaging. , 2008, Advanced drug delivery reviews.

[67]  J. Schnur,et al.  Lipid Tubules: A Paradigm for Molecularly Engineered Structures , 1993, Science.

[68]  H. Ichijo,et al.  Pathophysiological roles of ASK1-MAP kinase signaling pathways. , 2007, Journal of biochemistry and molecular biology.

[69]  H. Ohishi,et al.  Heat-induced growth inhibition and apoptosis in transplanted human head and neck squamous cell carcinomas with different status of p53 , 2003, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[70]  G. Magro,et al.  Differential expression of heat shock protein 27 in normal oral mucosa, oral epithelial dysplasia and squamous cell carcinoma. , 2002, Oncology reports.

[71]  W. Baumann,et al.  Endoplasmic reticulum stress, the unfolded protein response, autophagy, and the integrated regulation of breast cancer cell fate. , 2012, Cancer research.

[72]  Thomas Jay Webster,et al.  Nanomedicine for implants: a review of studies and necessary experimental tools. , 2007, Biomaterials.

[73]  M. Mahmoudi,et al.  Superparamagnetic colloidal nanocrystal clusters coated with polyethylene glycol fumarate: a possible novel theranostic agent. , 2011, Nanoscale.

[74]  Karthikeyan Subramani,et al.  Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. , 2011, Chemical reviews.

[75]  Noritada Kaji,et al.  Nanotechnology for genomics & proteomics , 2006 .

[76]  B. Vogelstein,et al.  p53 mutations in human cancers. , 1991, Science.

[77]  Sergey V. Churakov,et al.  Hydrogen bond connectivity in jennite from ab initio simulations , 2008 .

[78]  Stephen Mann,et al.  Nanoparticles can cause DNA damage across a cellular barrier. , 2009, Nature nanotechnology.

[79]  Langer,et al.  New advances in microsphere-based single-dose vaccines. , 1997, Advanced drug delivery reviews.

[80]  D E Ingber,et al.  Leukocyte adhesion to vascular endothelium induces E-selectin linkage to the actin cytoskeleton , 1996, The Journal of cell biology.

[81]  M. Gendron,et al.  Responses of well-differentiated nasal epithelial cells exposed to particles: role of the epithelium in airway inflammation. , 2006, Toxicology and applied pharmacology.

[82]  Vincent M Rotello,et al.  Effect of nanoparticle surface charge at the plasma membrane and beyond. , 2010, Nano letters.

[83]  D. Ingber,et al.  Mechanotransduction across the cell surface and through the cytoskeleton , 1993 .

[84]  R. Reis,et al.  Controlling cell behavior through the design of polymer surfaces. , 2010, Small.

[85]  S. Laurent,et al.  Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics. , 2011, Nanomedicine.

[86]  Anna A Shvedova,et al.  Nanomedicine and nanotoxicology: two sides of the same coin. , 2005, Nanomedicine : nanotechnology, biology, and medicine.

[87]  G. Nienhaus,et al.  Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications , 2011 .

[88]  Boris Murmann,et al.  Matrix-insensitive protein assays push the limits of biosensors in medicine , 2009, Nature Medicine.

[89]  T. Ohnishi The role of the p53 molecule in cancer therapies with radiation and/or hyperthermia. , 2005, Journal of cancer research and therapeutics.

[90]  André Nel,et al.  ATMOSPHERE: Enhanced: Air Pollution-Related Illness: Effects of Particles , 2005 .

[91]  Marina A Dobrovolskaia,et al.  Evaluation of nanoparticle immunotoxicity. , 2009, Nature nanotechnology.

[92]  D. Girard,et al.  Activation of human neutrophils by titanium dioxide (TiO2) nanoparticles. , 2010, Toxicology in vitro : an international journal published in association with BIBRA.

[93]  Urs O. Häfeli,et al.  Crucial Ignored Parameters on Nanotoxicology: The Importance of Toxicity Assay Modifications and “Cell Vision” , 2012, PloS one.

[94]  Sara Linse,et al.  Complete high‐density lipoproteins in nanoparticle corona , 2009, The FEBS journal.

[95]  Xiaohu Gao,et al.  Plasmonic fluorescent quantum dots. , 2009, Nature nanotechnology.

[96]  S. Kawachi,et al.  Abstract 1321: A novel prevention method against re-obstruction of titanium alloy stent for biliary malignancy using generation of hydroxyl radical under ultrasonic irradiation , 2012 .

[97]  Catrin Albrecht,et al.  Cellular responses to nanoparticles: Target structures and mechanisms , 2007 .

[98]  C. Wolf,et al.  The Cap'n'Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. , 2001, Cancer research.

[99]  Tuo Wei,et al.  Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. , 2012, ACS nano.

[100]  Gabriel A. Silva,et al.  Neuroscience nanotechnology: progress, opportunities and challenges , 2006, Nature Reviews Neuroscience.

[101]  D. MacGlashan IgE receptor and signal transduction in mast cells and basophils. , 2008, Current opinion in immunology.

[102]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[103]  N. Kameta,et al.  Controllable biomolecule release from self-assembled organic nanotubes with asymmetric surfaces: pH and temperature dependence. , 2008, Soft matter.

[104]  K. Ishihara,et al.  Integrated functional nanocolloids covered with artificial cell membranes for biomedical applications , 2011 .

[105]  Martin Oheim,et al.  Synthesis and characterization of polymer-coated quantum dots with integrated acceptor dyes as FRET-based nanoprobes. , 2007, Nano letters.

[106]  Iseult Lynch,et al.  Protein-nanoparticle interactions: What does the cell see? , 2009, Nature nanotechnology.

[107]  Jon Dobson,et al.  Remote control of cellular behaviour with magnetic nanoparticles. , 2008, Nature nanotechnology.

[108]  Warren C W Chan,et al.  Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. , 2007, Nano letters.

[109]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.

[110]  M. Mann,et al.  Quantitative, high-resolution proteomics for data-driven systems biology. , 2011, Annual review of biochemistry.

[111]  E Ingham,et al.  Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. , 2011, Nature nanotechnology.

[112]  A. Papavassiliou,et al.  Expression of the 27-kDa heat shock protein (HSP27) in gastric carcinomas and adjacent normal, metaplastic, and dysplastic gastric mucosa, and its prognostic significance , 2002, Journal of Cancer Research and Clinical Oncology.

[113]  A. Takahashi,et al.  p53 -Dependent thermal enhancement of cellular sensitivity in human squamous cell carcinomas in relation to LET , 2001, International journal of radiation biology.

[114]  W. Dewey,et al.  Recovery of CHO cells from hyperthermic potentiation to X-rays repair of DNA and chromatin. , 1981, Radiation research.

[115]  Ying Liu,et al.  Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. , 2010, Biomaterials.

[116]  N. Sniadecki A tiny touch: activation of cell signaling pathways with magnetic nanoparticles. , 2010, Endocrinology.

[117]  W. Koh,et al.  Fabrication and characterization of optical biosensors using polymer hydrogel microparticles and enzyme–quantum dot conjugates , 2010 .

[118]  M. Lambot,et al.  Overexpression of 27‐kDa heat shock protein relates to poor histological differentiation in human oesophageal squamous cell carcinoma , 2000, Histopathology.

[119]  P. Srivastava,et al.  A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. , 1995, Science.

[120]  Xiangling Xiong,et al.  Nanoparticle-mediated IgE-receptor aggregation and signaling in RBL mast cells. , 2009, Journal of the American Chemical Society.

[121]  S. Holgate,et al.  Health impact and toxicological effects of nanomaterials in the lung , 2012, Respirology.

[122]  Stephanie E. A. Gratton,et al.  The effect of particle design on cellular internalization pathways , 2008, Proceedings of the National Academy of Sciences.

[123]  H. Bruhn,et al.  Local Arterial Infusion of Superparamagnetic Iron Oxide Particles in Hepatocellular Carcinoma: A Feasibility and 3.0 T MRI Study , 2006, Investigative radiology.

[124]  P. Stroeve,et al.  Toxicity of nanomaterials. , 2012, Chemical Society reviews.

[125]  N. Thanh,et al.  Functionalisation of nanoparticles for biomedical applications , 2010 .

[126]  Warren C W Chan,et al.  Nanoparticle-mediated cellular response is size-dependent. , 2008, Nature nanotechnology.

[127]  M. Hande,et al.  Cytotoxicity and genotoxicity of silver nanoparticles in human cells. , 2009, ACS nano.

[128]  W. Chan,et al.  Nanotoxicology. No signs of illness. , 2012, Nature nanotechnology.

[129]  Wolfgang J. Parak,et al.  Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation , 2011 .

[130]  C. Hoeller,et al.  MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. , 2004, Magnetic resonance imaging.

[131]  L. Huber,et al.  Mapping in vivo signal transduction defects by phosphoproteomics. , 2012, Trends in molecular medicine.

[132]  Jinhee Choi,et al.  Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. , 2009, Toxicology letters.

[133]  R. L. Jones,et al.  Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. , 2008, The journal of physical chemistry. B.

[134]  Hernán E. Grecco,et al.  Signaling from the Living Plasma Membrane , 2011, Cell.

[135]  R. Serda,et al.  Targeting and Cellular Trafficking of Magnetic Nanoparticles for Prostate Cancer Imaging , 2007, Molecular imaging.

[136]  Rodica-Mariana Ion,et al.  Fullerene-porphyrin nanostructures in photodynamic therapy. , 2010, Nanomedicine.

[137]  J. Fujii,et al.  Tumorigenesis and Neoplastic Progression Nano-Scaled Particles of Titanium Dioxide Convert Benign Mouse Fibrosarcoma Cells into Aggressive Tumor Cells , 2010 .

[138]  A. Takahashi,et al.  Transfection of mutant p53 gene depresses X-ray- or CDDP-induced apoptosis in a human squamous cell carcinoma of the head and neck , 2002, Apoptosis.

[139]  Bengt Fadeel,et al.  Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. , 2010, Annual review of pharmacology and toxicology.

[140]  Robert Langer,et al.  Moving smaller in drug discovery and delivery , 2002, Nature Reviews Drug Discovery.

[141]  M. Humphries,et al.  Linking integrin conformation to function , 2009, Journal of Cell Science.

[142]  Qing‐Yu He,et al.  Identification of tumor‐associated proteins in oral tongue squamous cell carcinoma by proteomics , 2004, Proteomics.

[143]  Meiying Wang,et al.  Use of Proteomics to Demonstrate a Hierarchical Oxidative Stress Response to Diesel Exhaust Particle Chemicals in a Macrophage Cell Line* , 2003, Journal of Biological Chemistry.

[144]  J. Downward,et al.  Many faces of Ras activation. , 2008, Biochimica et biophysica acta.

[145]  S. Kahn,et al.  Inhibition of glycosaminoglycan synthesis and protein glycosylation with WAS-406 and azaserine result in reduced islet amyloid formation in vitro. , 2007, American journal of physiology. Cell physiology.

[146]  A. Ganser,et al.  Monitoring of Bone Marrow Cell Homing Into the Infarcted Human Myocardium , 2005, Circulation.

[147]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[148]  J. Post,et al.  Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction , 2004, Nature Biotechnology.

[149]  P. Fromherz,et al.  A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. , 1991, Science.

[150]  Chung-Yuan Mou,et al.  Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. , 2009, Small.

[151]  K. Unfried,et al.  c-Src-mediated activation of Erk1/2 is a reaction of epithelial cells to carbon nanoparticle treatment and may be a target for a molecular preventive strategy , 2010, Biological chemistry.

[152]  P. Wust,et al.  Hyperthermia in combined treatment of cancer. , 2002, The Lancet Oncology.

[153]  Kenneth M. Yamada,et al.  Transmembrane crosstalk between the extracellular matrix and the cytoskeleton , 2001, Nature Reviews Molecular Cell Biology.

[154]  Sara Linse,et al.  Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. , 2007, Angewandte Chemie.

[155]  J. Heinisch,et al.  How do I begin? Sensing extracellular stress to maintain yeast cell wall integrity. , 2011, European journal of cell biology.

[156]  E. Dikomey,et al.  Effect of heat on induction and repair of DNA strand breaks in X-irradiated CHO cells. , 1992, International journal of radiation biology.

[157]  J. Bull,et al.  Apoptosis in tumors and normal tissues induced by whole body hyperthermia in rats. , 1995, Cancer research.

[158]  R. Warters,et al.  Excision of X-ray-induced thymine damage in chromatin from heated cells. , 1979, Radiation research.

[159]  M. Dobrovolskaia,et al.  Immunological properties of engineered nanomaterials , 2007, Nature Nanotechnology.

[160]  Samir Mitragotri,et al.  Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[161]  K. Landfester,et al.  Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. , 2006, Biomaterials.

[162]  Zijian Zhou,et al.  Nanoprobes for in vitro diagnostics of cancer and infectious diseases. , 2012, Biomaterials.

[163]  Monty Liong,et al.  Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. , 2008, ACS nano.

[164]  Nuria Sanvicens,et al.  Multifunctional nanoparticles--properties and prospects for their use in human medicine. , 2008, Trends in biotechnology.

[165]  Li Tang,et al.  Synthesis and biological response of size-specific, monodisperse drug-silica nanoconjugates. , 2012, ACS nano.

[166]  Christopher H Contag,et al.  Molecular imaging using visible light to reveal biological changes in the brain. , 2006, Neuroimaging clinics of North America.

[167]  Kenneth A. Dawson,et al.  Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. , 2012, ACS nano.

[168]  W. Kolch,et al.  Cell Type-Specific Activation of AKT and ERK Signaling Pathways by Small Negatively-Charged Magnetic Nanoparticles , 2012, Scientific Reports.

[169]  Morteza Mahmoudi,et al.  Cell "vision": complementary factor of protein corona in nanotoxicology. , 2012, Nanoscale.

[170]  S. Gambhir,et al.  A novel clinically translatable fluorescent nanoparticle for targeted molecular imaging of tumors in living subjects. , 2012, Nano letters.

[171]  R. Kamm,et al.  VASP involvement in force-mediated adherens junction strengthening. , 2008, Biochemical and biophysical research communications.

[172]  C. Contag,et al.  Synergistic Antitumor Effects of Immune Cell-Viral Biotherapy , 2006, Science.

[173]  Robert A. Weinberg,et al.  Ras oncogenes: split personalities , 2008, Nature Reviews Molecular Cell Biology.

[174]  C. Baumgarten,et al.  Stretch of β1 Integrin Activates an Outwardly Rectifying Chloride Current via FAK and Src in Rabbit Ventricular Myocytes , 2003, The Journal of general physiology.

[175]  Morteza Mahmoudi,et al.  Engineered nanoparticles for biomolecular imaging. , 2011, Nanoscale.

[176]  A. Takahashi,et al.  Transfection with mutant p53 gene inhibits heat-induced apoptosis in a head and neck cell line of human squamous cell carcinoma. , 2000, International journal of radiation oncology, biology, physics.

[177]  K. Landfester,et al.  Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. , 2008, Macromolecular bioscience.

[178]  Walter Kolch,et al.  Functional proteomics to dissect tyrosine kinase signalling pathways in cancer , 2010, Nature Reviews Cancer.

[179]  Jingping Liu,et al.  Design of self-assembling peptides and their biomedical applications. , 2011, Nanomedicine.

[180]  P. Wust,et al.  Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme , 2010, Journal of Neuro-Oncology.

[181]  R. Duncan,et al.  Nanomedicine(s) under the microscope. , 2011, Molecular pharmaceutics.

[182]  J. Dobson,et al.  Selective activation of mechanosensitive ion channels using magnetic particles , 2007, Journal of The Royal Society Interface.

[183]  T. Xia,et al.  Toxic Potential of Materials at the Nanolevel , 2006, Science.

[184]  Brian P Helmke,et al.  Mechanisms of mechanotransduction. , 2006, Developmental cell.

[185]  Sonja Boland,et al.  Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells , 2010, Particle and Fibre Toxicology.

[186]  J. West,et al.  Nano-C60 cytotoxicity is due to lipid peroxidation. , 2005, Biomaterials.

[187]  A. Mohs,et al.  Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. , 2009, Nature nanotechnology.

[188]  Peter Wick,et al.  Nanotoxicology: an interdisciplinary challenge. , 2011, Angewandte Chemie.

[189]  Hiroyuki Honda,et al.  Medical application of functionalized magnetic nanoparticles. , 2005, Journal of bioscience and bioengineering.

[190]  W. Li,et al.  Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. , 2012, Nano letters.

[191]  A. Baulig,et al.  Fine particulate matter induces amphiregulin secretion by bronchial epithelial cells. , 2004, American journal of respiratory cell and molecular biology.

[192]  Kenneth A. Dawson,et al.  Nanotoxicology: nanoparticles reconstruct lipids. , 2009, Nature nanotechnology.

[193]  P. Ray,et al.  Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. , 2012, Cellular signalling.

[194]  C. Kumar,et al.  Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. , 2011, Advanced drug delivery reviews.

[195]  D. Arndt-Jovin,et al.  Imaging takes a quantum leap. , 2004, Physiology.

[196]  Ning Wang,et al.  Rapid signal transduction in living cells is a unique feature of mechanotransduction , 2008, Proceedings of the National Academy of Sciences.

[197]  Kreuter,et al.  Preparation, characterization and cytotoxicity of methylmethacrylate copolymer nanoparticles with a permanent positive surface charge. , 1997, International journal of pharmaceutics.

[198]  F. Simmel Towards biomedical applications for nucleic acid nanodevices. , 2007, Nanomedicine.

[199]  J. I. Trujillo,et al.  MEK inhibitors: a patent review 2008 – 2010 , 2011, Expert opinion on therapeutic patents.

[200]  Huajian Gao,et al.  Effect of single wall carbon nanotubes on human HEK293 cells. , 2005, Toxicology letters.

[201]  M. Mahmoudi,et al.  Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. , 2011, Advanced drug delivery reviews.

[202]  A. E. Haj,et al.  Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine , 2012 .

[203]  Mary Gulumian,et al.  The limits of testing particle-mediated oxidative stress in vitro in predicting diverse pathologies; relevance for testing of nanoparticles , 2009, Particle and Fibre Toxicology.

[204]  Michael S. Strano,et al.  Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. , 2009, ACS nano.

[205]  R. Seger,et al.  The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions , 2006, Growth factors.

[206]  Alexander M. Seifalian,et al.  Toxicology and clinical potential of nanoparticles , 2011, Nano today.

[207]  S. Nie,et al.  Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy , 2008 .

[208]  É. Margittai,et al.  Oxidative Protein Folding in the Secretory Pathway and Redox Signaling Across Compartments and Cells , 2011, Traffic.

[209]  K. Landfester,et al.  Miniemulsion polymerization as a versatile tool for the synthesis of functionalized polymers , 2010, Beilstein journal of organic chemistry.

[210]  P. Green,et al.  Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures. , 2009, Nature materials.

[211]  Morteza Mahmoudi,et al.  Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell "vision" versus physicochemical properties of nanoparticles. , 2011, ACS nano.

[212]  Tim Liedl,et al.  Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. , 2005, Nano letters.

[213]  Istvan Toth,et al.  Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. , 2011, Nature nanotechnology.

[214]  Liangfang Zhang,et al.  Nanoparticle-induced surface reconstruction of phospholipid membranes , 2008, Proceedings of the National Academy of Sciences.

[215]  T. Someya,et al.  Organic transistors with high thermal stability for medical applications , 2012, Nature Communications.

[216]  S M Moghimi,et al.  Long-circulating and target-specific nanoparticles: theory to practice. , 2001, Pharmacological reviews.

[217]  R. Newson,et al.  Thresholds for indirect DNA damage across cellular barriers for orthopaedic biomaterials. , 2010, Biomaterials.

[218]  Hyun-Joung Lim,et al.  15d-PGJ2 stimulates HO-1 expression through p38 MAP kinase and Nrf-2 pathway in rat vascular smooth muscle cells. , 2007, Toxicology and applied pharmacology.

[219]  K. Smith‐Miles,et al.  Self-organizing circuitry and emergent computation in mouse embryonic stem cells. , 2012, Stem cell research.

[220]  Alexander M Seifalian,et al.  A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS). , 2011, Macromolecular rapid communications.

[221]  Shiladitya Sengupta,et al.  Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy , 2009, Proceedings of the National Academy of Sciences.