Non-Newtonian viscosity in steady-state shear flows

Abstract Different possible mechanisms of non-Newtonian behavior of polymeric and multi-component materials in shearing are discussed. There are two main types of the non-Newtonian media: fluids with the maximal (zero-shear-rate) Newtonian viscosity and yielding visco-plastic materials. Numerous intermediate and superimposing situations can also exist. The main concept of the non-Newtonian viscosity of such elastic fluids as polymer melts is based on definition of their “structure” as the set of relaxation modes modified by deformation. Shear-induced relaxation spectrum transformations lead to non-linearity, formation of anisotropic structures, and changes in the macromolecule entanglement topology. A general approach to quantitative description of non-Newtonian flow of polymer melts is achieved if to assume that the dominant reason of non-linear flow properties is molecular-weight distribution of polydisperse polymers with continuous flow-to rubbery transition from the side of slow relaxation modes with increasing shear rate. The non-Newtonian viscosity of such multi-component systems as numerous suspensions, emulsions, and mixtures is characterized by transition from the flow curves with the zero-shear-rate viscosity to the yield-type behavior. The latter is the direct evidence of a spatial structure which changes in shearing. The yield stress value can be rigorously determined only for rigid structures. For soft matters, the structural breakdown/buildup processes are a time dependent (thixotropic/rheopectic) phenomenon, and the concept of yielding becomes uncertain. Nature of structures in various multi-component materials can be very different but just their existence determines a possibility of non-linear effects in shearing. A special type of the non-Newtonian flow is instability and inhomogeneity of a stream. Different forms of these phenomena (shear banding, layered flow, surface distortions, periodic oscillations, concentration separation, and movement of large structural aggregates) are known. In such situations, the “measured” non-Newtonian viscosity can appear an artifact depending on the size factor.

[1]  Shi‐Qing Wang,et al.  Nonlinear Flow Behavior of Entangled Polymer Solutions: Yieldlike Entanglement−Disentanglement Transition , 2004 .

[2]  W. Gleissle Two Simple Time-Shear Rate Relations Combining Viscosity and First Normal Stress Coefficient in the Linear and Non-Linear Flow Range , 1980 .

[3]  G. Ianniruberto,et al.  On compatibility of the Cox-Merz rule with the model of Doi and Edwards , 1996 .

[4]  Heinrich M. Jaeger,et al.  The role of dilation and confining stresses in shear thickening of dense suspensions , 2010, 1010.4921.

[5]  Gustavo V. Barbosa-Cánovas,et al.  Rheology for the food industry , 2005 .

[6]  J. Dealy,et al.  Wall slip of polyisobutylene: Interfacial and pressure effects , 1999 .

[7]  J. van der Gucht,et al.  Multiple shear-banding transitions in a supramolecular polymer solution. , 2006, Physical review letters.

[8]  M. Wagner,et al.  Network disentanglement and time‐dependent flow behaviour of polymer melts , 1980 .

[9]  E. Windhab,et al.  Stress driven shear bands and the effect of confinement on their structures--a rheological, flow visualization, and Rheo-SALS study. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[10]  Dietler,et al.  Gelation of colloidal silica. , 1986, Physical review letters.

[11]  Y. T. Hu Steady-state shear banding in entangled polymers? , 2010 .

[12]  Q. D. Nguyen,et al.  Measuring the Flow Properties of Yield Stress Fluids , 1992 .

[13]  N. Uriev,et al.  Fractal models in rheology of colloidal gels , 1996 .

[14]  S. Egelhaaf,et al.  Nonlinear rheology of colloidal gels with intermediate volume fraction , 2011 .

[15]  P. Janmey,et al.  Elasticity of semiflexible biopolymer networks. , 1995, Physical review letters.

[16]  R. Larson Instabilities in viscoelastic flows , 1992 .

[17]  R. Castillo,et al.  Shear-induced structures formed during thixotropic loops in dilute worm-micelle solutions. , 2007, Journal of colloid and interface science.

[18]  P. Callaghan,et al.  Shear banding phenomena in ultrasoft colloidal glasses , 2004 .

[19]  J. Vermant,et al.  The effect of particle size and migration on the formation of flow-induced structures in viscoelastic suspensions , 2010 .

[20]  Shi‐Qing Wang,et al.  Observations of wall slip and shear banding in an entangled DNA solution , 2008 .

[21]  Ronald G. Larson,et al.  Modeling the Rheology of Polymer Melts and Solutions , 2015 .

[22]  Paul J. Flory,et al.  The Configuration of Real Polymer Chains , 1949 .

[23]  J. Vermant,et al.  Flow-induced orientation of non-spherical particles: Effect of aspect ratio and medium rheology , 2008 .

[24]  P. Terech,et al.  Rheometry of an androstanol steroid derivative paramagnetic organogel. Methodology for a comparison with a fatty acid organogel , 2007 .

[25]  C. Tiu,et al.  The shear-induced solid–liquid transition in yield stress materials with chemically different structures , 2005 .

[26]  T. Papanastasiou Flows of Materials with Yield , 1987 .

[27]  P. Callaghan Rheo NMR and shear banding , 2008 .

[28]  M. Djabourov,et al.  Water in water emulsions: phase separation and rheology of biopolymer solutions , 2001 .

[29]  Eric Brown,et al.  Shear thickening and jamming in densely packed suspensions of different particle shapes. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Dapeng Bi,et al.  Rheology of granular materials: dynamics in a stress landscape , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  Jamming, two-fluid behavior, and "self-filtration" in concentrated particulate suspensions. , 2003, Physical review letters.

[32]  D. Reichman,et al.  Arrested fluid-fluid phase separation in depletion systems: Implications of the characteristic length on gel formation and rheology , 2010 .

[33]  N. Uriev Structure, rheology and stability of concentrated disperse systems under dynamic conditions , 1994 .

[34]  Timothy P. Lodge,et al.  Interfacial slip reduces polymer-polymer adhesion during coextrusion , 2006 .

[35]  R D Kamm,et al.  Mechanical properties of a self-assembling oligopeptide matrix. , 1998, Journal of biomaterials science. Polymer edition.

[36]  M. E. Ryan,et al.  Rheological Behavior of Filled Polymeric Systems I. Yield Stress and Shear‐Thinning Effects , 1988 .

[37]  Yuntao Hu,et al.  Kinetics and mechanism of shear banding in an entangled micellar solution , 2005 .

[38]  P. Olmsted Perspectives on shear banding in complex fluids , 2008 .

[39]  P. Scales,et al.  THE YIELD STRESS OF CONCENTRATED FLOCCULATED SUSPENSIONS OF SIZE DISTRIBUTED PARTICLES , 1999 .

[40]  D. Williams,et al.  Direct measurement of static yield properties of cohesive suspensions , 1987 .

[41]  E. C. Bingham Fluidity And Plasticity , 1922 .

[42]  A. Malkin,et al.  Modeling macromolecular movement in polymer melts and its relation to nonlinear rheology , 2011 .

[43]  S. Manneville Recent experimental probes of shear banding , 2008, 0903.5389.

[44]  Dimitris Vlassopoulos,et al.  Thixotropy, yielding and ultrasonic Doppler velocimetry in pulp fibre suspensions , 2012, Rheologica Acta.

[45]  A. Malkin,et al.  Shear and normal stresses in flow of highly concentrated emulsions , 2007 .

[46]  S. Reynaud,et al.  Drop deformation in sheared polymer blends , 2007 .

[47]  A. Malkin,et al.  Entanglement junctions in melts and concentrated solutions of flexible-chain polymers: Macromodeling , 2011 .

[48]  P. Schiller,et al.  Shear induced periodic structure changes in concentrated alumina suspensions at constant shear rate monitored by FBRM , 2005 .

[49]  M. Minale Models for the deformation of a single ellipsoidal drop: a review , 2010 .

[50]  Philippe Coussot,et al.  Viscosity bifurcation in thixotropic, yielding fluids , 2002 .

[51]  G. Vinogradov,et al.  On rheological properties of polydisperse polymers , 1974 .

[52]  A. Malkin,et al.  Self-organization in the flow of complex fluids (colloid and polymer systems). Part 2: Theoretical models. , 2011, Advances in colloid and interface science.

[53]  R. Pasquino,et al.  Migration of a sphere suspended in viscoelastic liquids in Couette flow: experiments and simulations , 2012, Rheologica Acta.

[54]  Y. Pao Theories for the flow of dilute solutions of polymers and of nondiluted liquid polymers , 1962 .

[55]  Jan Mewis,et al.  Current trends in suspension rheology , 2009 .

[56]  Vorticity structuring and velocity rolls triggered by gradient shear bands. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  J. R. Bruyn,et al.  Scaling and mesostructure of Carbopol dispersions , 2012, Rheologica Acta.

[58]  D. Bonn,et al.  Yield Stress Fluids Slowly Yield to Analysis , 2009, Science.

[59]  O. Manero,et al.  Inhomogeneous flows and shear banding formation in micellar solutions: Predictions of the BMP model , 2012 .

[60]  J. D. Cloizeaux,et al.  Conformation of Polymer Chain in the Bulk , 1974 .

[61]  M. Shaffer,et al.  Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multiwall carbon nanotubes , 2006 .

[62]  P Ballesta,et al.  Shear banding and flow-concentration coupling in colloidal glasses. , 2010, Physical review letters.

[63]  L. Nicolais,et al.  Shear rate dependent viscosity of suspensions in newtonian and non-newtonian liquids , 1974 .

[64]  G. Vinogradov,et al.  Rheology of polymers , 1980 .

[65]  J. Crassous,et al.  Shear stresses of colloidal dispersions at the glass transition in equilibrium and in flow. , 2008, The Journal of chemical physics.

[66]  Daniel Bonn,et al.  An attempt to categorize yield stress fluid behaviour , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[67]  Philippe Coussot,et al.  Phenomenology and physical origin of shear localization and shear banding in complex fluids , 2009, 1002.1890.

[68]  H. Reynaers,et al.  Shear-induced morphologies of cubic ordered block copolymer micellar networks studied by in situ small-angle neutron scattering and rheology , 2002 .

[69]  R. Pal Rheology of high internal phase ratio emulsions , 2006 .

[70]  S. Manneville,et al.  Shear banding in a lyotropic lamellar phase. I. Time-averaged velocity profiles. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  J. Mewis,et al.  Transient rheological response and morphology evolution of immiscible polymer blends , 1997 .

[72]  Alexander Ya. Malkin,et al.  Macroscopic Modeling of a Single Entanglement at High Deformation Rates of Polymer Melts , 2012 .

[73]  G. Vinogradov,et al.  Peculiarities of flow and viscoelastic properties of solutions of polymers with a narrow molecular-weight distribution , 1973 .

[74]  P. Callaghan,et al.  Two-Phase Shear Band Structures at Uniform Stress , 1997 .

[75]  Structure and dynamics of colloidal depletion gels: coincidence of transitions and heterogeneity. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  James L. White,et al.  A plastic-viscoelastic constitutive equation to represent the rheological behavior of concentrated suspensions of small particles in polymer melts☆ , 1979 .

[77]  M. Cates,et al.  First-principles constitutive equation for suspension rheology. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  F. Bertrand,et al.  Coexistence of liquid and solid phases in flowing soft-glassy materials. , 2002, Physical review letters.

[79]  Ronald G. Larson,et al.  Experimental studies of the onset of oscillatory instability in viscoelastic Taylor-Couette flow , 1993 .

[80]  L. Bécu,et al.  How does a concentrated emulsion flow?: Yielding, local rheology, and wall slip , 2005 .

[81]  C. Baravian,et al.  Plastic behavior of some yield stress fluids: from creep to long-time yield , 2008 .

[82]  S. Lerouge,et al.  SHEAR BANDING IN A MICELLAR SOLUTION UNDER TRANSIENT FLOW , 1998 .

[83]  P. Lomellini,et al.  Melt rheology of randomly branched polystyrenes , 1999 .

[84]  E. Del Gado,et al.  Elasticity of arrested short-ranged attractive colloids: homogeneous and heterogeneous glasses. , 2009, Physical review letters.

[85]  M. Shaw,et al.  A closer look at the MWD‐viscosity transform , 1994 .

[86]  D. Bonn,et al.  Issues in the flow of yield-stress liquids , 2011 .

[87]  Subbu S. Venkatraman,et al.  A comparison of torsional and capillary rheometry for polymer melts: The Cox‐Merz rule revisited , 1990 .

[88]  John F. Brady,et al.  Computer simulation of viscous suspensions , 2001 .

[89]  L. G. Leal,et al.  Structure formation in moderately concentrated viscoelastic suspensions in simple shear flow , 2001 .

[90]  Howard A. Barnes,et al.  The yield stress myth? , 1985 .

[91]  A. Malkin,et al.  Flow curve–molecular weight distribution: Is the solution of the inverse problem possible?† , 1991 .

[92]  H. Hinrichsen,et al.  The Physics of Granular Media: HINRICHSEN:GRANULAR MEDIA O-BK , 2004 .

[93]  Andreas N. Alexandrou,et al.  Steady Herschel–Bulkley fluid flow in three-dimensional expansions , 2001 .

[94]  N. Wagner,et al.  Dynamic properties of shear thickening colloidal suspensions , 2003 .

[95]  A. Malkin,et al.  Viscoplasticity and stratified flow of colloid suspensions , 2012 .

[96]  T. G. M. Ven,et al.  Dilute Aqueous Poly(ethylene oxide) Solutions: Clusters and Single Molecules in Thermodynamic Equilibrium , 1996 .

[97]  Liangbin Li,et al.  Shear inhomogeneity in poly(ethylene oxide) melts , 2011 .

[98]  Particle chaining and chain dynamics in viscoelastic liquids , 2012 .

[99]  G. V. Vinogradov,et al.  Viscoelastic properties and flow of narrow distribution polybutadienes and polyisoprenes , 1972 .

[100]  G. Vinogradov,et al.  Viscoelastic Properties of Filled Polymers , 1972 .

[101]  J. Stokes,et al.  The flowability of ice suspensions , 2005 .

[102]  V. Trappe,et al.  Rheology and structural arrest of casein suspensions. , 2010, Journal of colloid and interface science.

[103]  D. Mead Analytic derivation of the Cox–Merz rule using the MLD “toy” model for polydisperse linear polymers , 2011 .

[104]  A. Malkin,et al.  Gels of cysteine/Ag-based dilute colloid systems and their rheological properties , 2011 .

[105]  A. Malkin,et al.  Rheopexy in highly concentrated emulsions , 2005 .

[106]  W. Cox,et al.  Correlation of dynamic and steady flow viscosities , 1958 .

[107]  Nuri Aksel,et al.  On the solid-liquid transition of concentrated suspensions in transient shear flow , 2002 .

[108]  Michael E. Mackay,et al.  Shear and elongation flow properties of kaolin suspensions , 2002 .

[109]  Eric S. G. Shaqfeh,et al.  Purely elastic instabilities in viscometric flows , 1996 .

[110]  J. Rothstein,et al.  Transient evolution of shear-banding wormlike micellar solutions , 2007 .

[111]  Shi‐Qing Wang,et al.  Banding in Simple Steady Shear of Entangled Polymer Solutions , 2008 .

[112]  Jan Mewis,et al.  Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. , 2006, Soft matter.

[113]  D. Pine,et al.  Inhomogeneous structure formation and shear-thickening in worm-like micellar solutions , 1997 .

[114]  C. L. Tucker,et al.  Microstructural evolution in polymer blends , 2003 .

[115]  Rajinder Pal,et al.  Shear Viscosity Behavior of Emulsions of Two Immiscible Liquids. , 2000, Journal of colloid and interface science.

[116]  A. B. Metzner,et al.  Transient phenomena in thixotropic systems , 2002 .

[117]  A. Isayev,et al.  Rheology: Concepts, Methods and Applications , 2005 .

[118]  A. Malkin,et al.  Fracture of ultrafine fibers in the flow of mixtures of non-Newtonian polymer melts , 1989 .

[119]  P. Pusey,et al.  Yielding behavior of repulsion- and attraction-dominated colloidal glasses , 2008 .

[120]  J. Dealy,et al.  Use of rheological measurements to estimate the molecular weight distribution of linear polyethylene , 1996 .

[121]  Chao Peng,et al.  Shear-thickening behavior of polymethylmethacrylate particles suspensions in glycerine–water mixtures , 2010 .

[122]  M. Lacasse,et al.  Osmotic pressure and viscoelastic shear moduli of concentrated emulsions , 1997 .

[123]  J. W. Goodwin,et al.  Scaling behaviour of the rheology of aggregate networks formed from colloidal particles , 1988 .

[124]  B. M. Marín-Santibáñez,et al.  Rheo-PIV analysis of the slip flow of a metallocene linear low-density polyethylene melt , 2010 .

[125]  M. Lettinga,et al.  Is vorticity-banding due to an elastic instability? , 2008 .

[126]  S. Picken,et al.  The chaos-to-order transition in critical modes of shearing for polymer and nanocomposite melts , 2009 .

[127]  P. Callaghan,et al.  Shear banding and the isotropic-to-nematic transition in wormlike micelles. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[128]  Ross William Mair,et al.  Transition to shear banding in pipe and Couette flow of wormlike micellar solutions , 1999 .

[129]  H. Winter Three views of viscoelasticity for Cox–Merz materials , 2009 .

[130]  P. Moldenaers,et al.  Morphology development of a polystyrene/polymethylmethacrylate blend during start-up of uniaxial elongational flow , 2005 .

[131]  M. Shaw,et al.  Obtaining molecular-weight distribution information from the viscosity data of linear polymer melts , 1998 .

[132]  Shi‐Qing Wang,et al.  Banding in entangled polymer fluids under oscillatory shearing. , 2006, Physical review letters.

[133]  P. Møller,et al.  Shear banding and yield stress in soft glassy materials. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[134]  M. Sugimoto,et al.  Rheology of SiO2/(acrylic polymer/epoxy) suspensions. II. Nonlinear stress relaxation , 2010 .

[135]  A. Malkin Rheology of filled polymers , 1990 .

[136]  Derek L. Ho,et al.  Insight into Clustering in Poly(ethylene oxide) Solutions , 2004 .

[137]  Daniel Bonn,et al.  Yielding and shear banding in soft glassy materials. , 2010, Physical review letters.

[138]  H. Winter,et al.  Shear-induced long-range alignment of BCC-ordered block copolymers , 2007 .

[139]  G. Meeten Comparison of squeeze flow and vane rheometry for yield stress and viscous fluids , 2009 .

[140]  Howard A. Barnes,et al.  The ‘Yield Stress Myth?’ Paper – 21 Years On , 2007 .

[141]  M. Wagner,et al.  The damping function in rheology , 2009 .

[142]  Pelous,et al.  Structure and self-similarity of silica aerogels. , 1988, Physical review. B, Condensed matter.

[143]  Jeffrey F. Morris,et al.  A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow , 2009 .

[144]  F. Bertrand,et al.  Shear thickening and migration in granular suspensions. , 2010, Physical review letters.

[145]  I. Manas‐Zloczower,et al.  Viscosity model for polydisperse polymer melts , 1998 .

[146]  Wolfgang Ostwald,et al.  Ueber die Geschwindigkeitsfunktion der Viskosität disperser Systeme. IV , 1925 .

[147]  Flow induced by a sphere settling in an aging yield-stress fluid , 2006, cond-mat/0605608.

[148]  B. Eckhardt,et al.  Shear turbulence on a sparse spectral grid. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[149]  C. Roland,et al.  Reentanglement Kinetics in Sheared Polybutadiene Solutions , 2004 .

[150]  J. Lawler,et al.  On the stability of molecular weight distributions as computed from the flow curves of polymer melts , 1996 .

[151]  N. Wagner,et al.  Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition , 2009 .

[152]  B. Bersted An empirical model relating the molecular weight distribution of high‐density polyethylene to the shear dependence of the steady shear melt viscosity , 1975 .

[153]  M. Schmidt,et al.  Stick and slip phenomena during extrusion of polyethylene melts as investigated by laser-Doppler velocimetry , 2000 .

[154]  A. Malkin,et al.  Self-organization in the flow of complex fluids (colloid and polymer systems): part 1: experimental evidence. , 2010, Advances in colloid and interface science.

[155]  Robert S Farr,et al.  Close packing density of polydisperse hard spheres. , 2009, The Journal of chemical physics.

[156]  Shi‐Qing Wang,et al.  Yieldlike constitutive transition in shear flow of entangled polymeric fluids. , 2003, Physical review letters.

[157]  W. Briels,et al.  Gradient and vorticity banding , 2008 .

[158]  M. Haw Volume fraction variations and dilation in colloids and granulars , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[159]  C. L. Tucker,et al.  A model for large deformation of an ellipsoidal droplet with interfacial tension , 2003 .

[160]  J. G. Oldroyd,et al.  The elastic and viscous properties of emulsions and suspensions , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[161]  G. Georgiou,et al.  Shear rejuvenation, aging and shear banding in yield stress fluids , 2009 .

[162]  Amit Kumar,et al.  Dynamics of the orientation behavior and its connection with rheology in sheared non-Brownian suspensions of anisotropic dicolloidal particles , 2011 .

[163]  Matteo Pasquali,et al.  Vorticity alignment and negative normal stresses in sheared attractive emulsions. , 2004, Physical review letters.

[164]  Daniel Bonn,et al.  Origin of apparent viscosity in yield stress fluids below yielding , 2009 .

[165]  J. Fransaer,et al.  Direct visualization of yielding in model two-dimensional colloidal gels subjected to shear flow , 2009 .

[166]  N. Wagner,et al.  The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition , 2005 .

[167]  Paul T. Callaghan,et al.  Shear banding instability in wormlike micellar solutions , 1999 .

[168]  S. Hatzikiriakos Appropriate Boundary Conditions in the Flow of Molten Polymers , 2010 .

[169]  Alex Lips,et al.  Comparison between shear banding and shear thinning in entangled micellar solutions , 2008 .

[170]  Hiroshi Watanabe,et al.  Equilibrium Elasticity of Diblock Copolymer Micellar Lattice , 2001 .

[171]  T. Aubry,et al.  Rheological investigation of the melt state elastic and yield properties of a polyamide-12 layered silicate nanocomposite , 2005 .

[172]  W. Poon,et al.  Velocity oscillations in microfluidic flows of concentrated colloidal suspensions. , 2008, Physical review letters.

[173]  W. Ostwald Ueber die rechnerische Darstellung des Strukturgebietes der Viskosität , 1929 .

[174]  M. Reiner The Theory of Plastic Flow in the Rotation Viscometer , 1929 .

[175]  N. Uriev,et al.  Whether or not two types of layer coexist in colloidal gels under shear , 1996 .

[176]  R. Pal Yield stress and viscoelastic properties of high internal phase ratio emulsions , 1999 .

[177]  S. Kazarian,et al.  Near-wall particle depletion in a flowing colloidal suspension , 2002 .

[178]  J. Vermant,et al.  Flow-induced structure in colloidal suspensions , 2005 .

[179]  J. Vermant,et al.  Effect of the viscoelasticity of the suspending fluid on structure formation in suspensions , 2004 .

[180]  François Bertrand,et al.  Wall slip and yielding in pasty materials , 2003 .

[181]  M. Morbidelli,et al.  Theory of activated-rate processes under shear with application to shear-induced aggregation of colloids. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[182]  D. V. Boger,et al.  Effect of interparticle forces on shear thickening of oxide suspensions , 2000 .

[183]  S. Picken,et al.  Rheology–Structure Interrelationships of Hydroxypropylcellulose Liquid Crystal Solutions and Their Nanocomposites under Flow , 2013 .

[184]  R. Lapasin,et al.  Rheological characterisation of shear thickening TiO2 suspensions in low molecular polymer solution , 1997 .

[185]  Flow visualization of the elastic Taylor-Couette instability in Boger fluids , 1995 .