Effect of Y2O3 addition on the microstructure and mechanical properties of an Al1.8CoCrCu0.5FeNi BCC HEA

[1]  C. Baruffi,et al.  Screw vs. edge dislocation strengthening in body-centered-cubic high entropy alloys and implications for guided alloy design , 2022, MRS Communications.

[2]  I. Kaban,et al.  In Situ Studies of Non-Equilibrium Crystallization of Alxcocrfeni (X = 0.3, 1) High-Entropy Alloys , 2022, SSRN Electronic Journal.

[3]  S. Sinha,et al.  Strengthening of AlCoCrFeNi based high entropy alloy with nano- Y2O3 dispersion , 2022, Materials Science and Engineering: B.

[4]  Zhengtong Lu,et al.  Effect of Al/Ti ratio on γ′ and oxide dispersion strengthening in Ni-based ODS superalloys , 2022, Materials Science and Engineering: A.

[5]  K. Edalati,et al.  Microstructure and microhardness of dual-phase high-entropy alloy by high-pressure torsion: Twins and stacking faults in FCC and dislocations in BCC , 2021, Journal of Alloys and Compounds.

[6]  U. Dahlborg,et al.  Design and Production of a New FeCoNiCrAlCu High-Entropy Alloy: Influence of Powder Production Method on Sintering , 2021, Materials.

[7]  N. Lavery,et al.  Prediction of phase, hardness and density of high entropy alloys based on their electronic structure and average radius , 2021, Journal of Alloys and Compounds.

[8]  M. Lagos,et al.  Microstructure Evolution in a Fast and Ultrafast Sintered Non-Equiatomic Al/Cu HEA , 2021, Metals.

[9]  P. Liaw,et al.  Phase-field simulation of coherent BCC/B2 microstructures in high entropy alloys , 2020 .

[10]  V. Pouchlý,et al.  The Origins of High-Entropy Alloy Contamination Induced by Mechanical Alloying and Sintering , 2020, Metals.

[11]  J. Juraszek,et al.  Influence of the electronic polymorphism of Ni on the classification and design of high entropy alloys , 2020, Journal of Alloys and Compounds.

[12]  W. Steurer Single-phase high-entropy alloys – A critical update , 2020 .

[13]  A. Clarke,et al.  Solid-solution strengthening in refractory high entropy alloys , 2019, Acta Materialia.

[14]  K. Berent,et al.  The experimental and theoretical study on influence of Al and Cu contents on phase abundance changes in Al Cu FeCrNiCo HEA system , 2019, Journal of Alloys and Compounds.

[15]  M. Ghazisaeidi,et al.  Solid solution strengthening theories of high-entropy alloys , 2019, Materials Characterization.

[16]  J. Torralba,et al.  High-entropy alloys fabricated via powder metallurgy. A critical review , 2019, Powder Metallurgy.

[17]  A. Clarke,et al.  High-Throughput Solid Solution Strengthening Characterization in High Entropy Alloys , 2018, Acta Materialia.

[18]  Zhi-Yuan Liu,et al.  Local mechanical properties of AlxCoCrCuFeNi high entropy alloy characterized using nanoindentation , 2018 .

[19]  P. Veronesi,et al.  SPS-assisted Synthesis of SICp reinforced high entropy alloys: reactivity of SIC and effects of pre-mechanical alloying and post-annealing treatment , 2018 .

[20]  Steve Brown,et al.  Hume-Rothery for HEA classification and self-organizing map for phases and properties prediction , 2017 .

[21]  Mu Li,et al.  Evaluation of microstructure and mechanical property variations in AlxCoCrFeNi high entropy alloys produced by a high-throughput laser deposition method , 2017, 1710.08855.

[22]  P. Dederichs,et al.  Structure of the high-entropy alloy AlxCrFeCoNi: fcc versus bcc , 2017 .

[23]  Ł. Rogal,et al.  Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy , 2017 .

[24]  Yoon Suk Choi,et al.  Pile-up and sink-in nanoindentation behaviors in AlCoCrFeNi multi-phase high entropy alloy , 2017 .

[25]  K. B. S. Rao,et al.  Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods , 2017 .

[26]  I. Toda-Caraballo,et al.  Designing high entropy alloys employing thermodynamics and Gaussian process statistical analysis , 2017 .

[27]  I. Todd,et al.  The Effect of Electronic Structure on the Phases Present in High Entropy Alloys , 2017, Scientific Reports.

[28]  R. Goodall,et al.  Structure of some CoCrFeNi and CoCrFeNiPd multicomponent HEA alloys by diffraction techniques , 2016 .

[29]  Yong Zhang,et al.  NbTaV-(Ti,W) refractory high-entropy alloys: Experiments and modeling , 2016 .

[30]  Hongwei Yao,et al.  MoNbTaV Medium-Entropy Alloy , 2016, Entropy.

[31]  X. Sauvage,et al.  Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder , 2016 .

[32]  Ming-Hung Tsai,et al.  A second criterion for sigma phase formation in high-entropy alloys , 2016 .

[33]  P. Rivera-Díaz-del-Castillo,et al.  A criterion for the formation of high entropy alloys based on lattice distortion , 2016 .

[34]  A. G. McGregor,et al.  Predicting the formation and stability of single phase high-entropy alloys , 2016 .

[35]  Yao-Jen Chang,et al.  The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Tiy high entropy alloys , 2015 .

[36]  C. D. Lundin,et al.  Fatigue behavior of a wrought Al 0.5 CoCrCuFeNi two-phase high-entropy alloy , 2015 .

[37]  W. Qiu,et al.  Atomic-size and lattice-distortion effects in newly developed high-entropy alloys with multiple principal elements , 2015 .

[38]  John J. Lewandowski,et al.  Fracture Toughness and Fatigue Crack Growth Behavior of As-Cast High-Entropy Alloys , 2015, JOM.

[39]  Yong Zhang,et al.  A Criterion for Topological Close-Packed Phase Formation in High Entropy Alloys , 2015, Entropy.

[40]  Paul R. C. Kent,et al.  Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys , 2015 .

[41]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[42]  L. Battezzati,et al.  Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems , 2014 .

[43]  Oleg N. Senkov,et al.  Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys , 2014 .

[44]  B. S. Murty,et al.  Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys , 2014 .

[45]  C. Liu,et al.  More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase , 2013 .

[46]  E. George,et al.  Tensile properties of high- and medium-entropy alloys , 2013 .

[47]  Xing-wu Qiu,et al.  Microstructure and properties of AlCrFeNiCoCu high entropy alloy prepared by powder metallurgy , 2013 .

[48]  T. G. Nieh,et al.  Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy , 2013 .

[49]  Jien-Wei Yeh,et al.  Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys , 2012 .

[50]  Y. Carlan,et al.  Chemical and microstructural evolution on ODS Fe–14CrWTi steel during manufacturing stages , 2012 .

[51]  Nikita Stepanov,et al.  Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions , 2012 .

[52]  C. Woodward,et al.  Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy , 2011 .

[53]  I. Estrada-Guel,et al.  Microstructure of NiCoAlFeCuCr multi-component systems synthesized by mechanical alloying , 2011 .

[54]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[55]  P. Liaw,et al.  Refractory high-entropy alloys , 2010 .

[56]  J. Yeh,et al.  Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys , 2010 .

[57]  J. Yeh,et al.  Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys , 2009 .

[58]  Jien-Wei Yeh,et al.  Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content , 2006 .

[59]  Jien-Wei Yeh,et al.  Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy , 2006 .

[60]  J. Yeh,et al.  Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements , 2005 .

[61]  J. Yeh,et al.  Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements , 2005 .

[62]  S. Ukai,et al.  Nano-structure control in ODS martensitic steels by means of selecting titanium and oxygen contents , 2005 .

[63]  S. Ukai,et al.  Improvement of 9Cr-ODS martensitic steel properties by controlling excess oxygen and titanium contents , 2004 .

[64]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[65]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[66]  W. Johnson,et al.  Structural and thermodynamic properties of nanocrystalline fcc metals prepared by mechanical attrition , 1992 .

[67]  R. Labusch,et al.  Statistische theorien der mischkristallhärtung , 1972 .

[68]  N. Mott CXVII. A theory of work-hardening of metal crystals , 1952 .

[69]  V. Vinila,et al.  Synthesis and structural studies of superconducting perovskite GdBa2Ca3Cu4O10.5+δ nanosystems , 2022, Design, Fabrication, and Characterization of Multifunctional Nanomaterials.

[70]  A. Al-Azzawi,et al.  Mechanical Alloying and Milling , 2015 .

[71]  N. Page,et al.  Elastic properties of compacted metal powders , 1998 .

[72]  R. Labusch A Statistical Theory of Solid Solution Hardening , 1970 .