Deep Autoregressive Models for Join Cardinality Estimation

Deep Autoregressive Models for Join Cardinality Estimation

[1]  Patricia G. Selinger,et al.  Access path selection in a relational database management system , 1979, SIGMOD '79.

[2]  D. DeWitt,et al.  Equi-depth multidimensional histograms , 1988, SIGMOD '88.

[3]  Peter J. Haas,et al.  Improved histograms for selectivity estimation of range predicates , 1996, SIGMOD '96.

[4]  Patrick E. O'Neil,et al.  Improved query performance with variant indexes , 1997, SIGMOD '97.

[5]  Yannis E. Ioannidis,et al.  Selectivity Estimation Without the Attribute Value Independence Assumption , 1997, VLDB.

[6]  Theodore Johnson,et al.  Range selectivity estimation for continuous attributes , 1999, Proceedings. Eleventh International Conference on Scientific and Statistical Database Management.

[7]  Volker Markl,et al.  LEO - DB2's LEarning Optimizer , 2001, VLDB.

[8]  Ben Taskar,et al.  Learning Probabilistic Models of Relational Structure , 2001, ICML.

[9]  Ben Taskar,et al.  Selectivity estimation using probabilistic models , 2001, SIGMOD '01.

[10]  Rajeev Rastogi,et al.  Independence is good: dependency-based histogram synopses for high-dimensional data , 2001, SIGMOD '01.

[11]  Dimitrios Gunopulos,et al.  Selectivity estimators for multidimensional range queries over real attributes , 2005, The VLDB Journal.

[12]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[13]  Raghu Ramakrishnan,et al.  Synopses for query optimization: A space-complexity perspective , 2004, TODS.

[14]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[15]  Christian S. Jensen,et al.  Lightweight graphical models for selectivity estimation without independence assumptions , 2011, Proc. VLDB Endow..

[16]  Pedro M. Domingos,et al.  Sum-product networks: A new deep architecture , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[17]  Christian S. Jensen,et al.  Efficiently adapting graphical models for selectivity estimation , 2012, The VLDB Journal.

[18]  James Martens,et al.  On the Expressive Efficiency of Sum Product Networks , 2014, ArXiv.

[19]  Volker Markl,et al.  Self-Tuning, GPU-Accelerated Kernel Density Models for Multidimensional Selectivity Estimation , 2015, SIGMOD Conference.

[20]  Viktor Leis,et al.  How Good Are Query Optimizers, Really? , 2015, Proc. VLDB Endow..

[21]  Hugo Larochelle,et al.  MADE: Masked Autoencoder for Distribution Estimation , 2015, ICML.

[22]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[23]  Joseph K. Bradley,et al.  Spark SQL: Relational Data Processing in Spark , 2015, SIGMOD Conference.

[24]  Alex Graves,et al.  Conditional Image Generation with PixelCNN Decoders , 2016, NIPS.

[25]  Rico Sennrich,et al.  Neural Machine Translation of Rare Words with Subword Units , 2015, ACL.

[26]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[27]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[28]  Bin Wu,et al.  Wander Join: Online Aggregation via Random Walks , 2016, SIGMOD Conference.

[29]  Viktor Leis,et al.  Cardinality Estimation Done Right: Index-Based Join Sampling , 2017, CIDR.

[30]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[31]  Volker Markl,et al.  Estimating Join Selectivities using Bandwidth-Optimized Kernel Density Models , 2017, Proc. VLDB Endow..

[32]  Xi Chen,et al.  PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications , 2017, ICLR.

[33]  Viktor Leis,et al.  Query optimization through the looking glass, and what we found running the Join Order Benchmark , 2017, The VLDB Journal.

[34]  Olga Papaemmanouil,et al.  Deep Reinforcement Learning for Join Order Enumeration , 2018, aiDM@SIGMOD.

[35]  Feifei Li,et al.  Random Sampling over Joins Revisited , 2018, SIGMOD Conference.

[36]  Ion Stoica,et al.  Learning to Optimize Join Queries With Deep Reinforcement Learning , 2018, ArXiv.

[37]  Hiren Patel,et al.  Towards a Learning Optimizer for Shared Clouds , 2018, Proc. VLDB Endow..

[38]  Tim Kraska,et al.  The Case for Learned Index Structures , 2018 .

[39]  Guoliang Li,et al.  An End-to-End Learning-based Cost Estimator , 2019, Proc. VLDB Endow..

[40]  Xi Chen,et al.  Deep Unsupervised Cardinality Estimation , 2019, Proc. VLDB Endow..

[41]  Andreas Kipf,et al.  Learned Cardinalities: Estimating Correlated Joins with Deep Learning , 2018, CIDR.

[42]  Tim Kraska,et al.  Neo: A Learned Query Optimizer , 2019, Proc. VLDB Endow..

[43]  Ilya Sutskever,et al.  Language Models are Unsupervised Multitask Learners , 2019 .

[44]  David Phillips,et al.  Presto: SQL on Everything , 2019, 2019 IEEE 35th International Conference on Data Engineering (ICDE).

[45]  Yuanyuan Tian,et al.  Designing Succinct Secondary Indexing Mechanism by Exploiting Column Correlations , 2019, SIGMOD Conference.

[46]  Srikanth Kandula,et al.  Selectivity Estimation for Range Predicates using Lightweight Models , 2019, Proc. VLDB Endow..

[47]  Charlie Nash,et al.  Autoregressive Energy Machines , 2019, ICML.

[48]  Badrish Chandramouli,et al.  Qd-tree: Learning Data Layouts for Big Data Analytics , 2020, SIGMOD Conference.

[49]  Theodoros Rekatsinas,et al.  Attention-based Learning for Missing Data Imputation in HoloClean , 2020, MLSys.

[50]  Barzan Mozafari,et al.  QuickSel: Quick Selectivity Learning with Mixture Models , 2018, SIGMOD Conference.

[51]  Carsten Binnig,et al.  DeepDB , 2019, Proc. VLDB Endow..