Case Study of Genome Sequencing on an FPGA: Survey and a New Perspective

[1]  Martin C. Herbordt,et al.  FMSA: FPGA-Accelerated ClustalW-Based Multiple Sequence Alignment through Pipelined Prefiltering , 2012, 2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines.

[2]  Bertil Schmidt,et al.  Accelerating short read mapping on an FPGA (abstract only) , 2012, FPGA '12.

[3]  Quinn Snell,et al.  Accelerated large-scale multiple sequence alignment , 2011, BMC Bioinformatics.

[4]  Knut Reinert,et al.  STELLAR: fast and exact local alignments , 2011, BMC Bioinformatics.

[5]  Vasanth Bala,et al.  Dynamo: a transparent dynamic optimization system , 2000, SIGP.

[6]  Wei-keng Liao,et al.  Anatomy of a hash-based long read sequence mapping algorithm for next generation DNA sequencing , 2011, Bioinform..

[7]  Bin Liu,et al.  A memory-efficient pipelined implementation of the aho-corasick string-matching algorithm , 2010, TACO.

[8]  Yongchao Liu,et al.  CUDASW++2.0: enhanced Smith-Waterman protein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions , 2010, BMC Research Notes.

[9]  Yu Wang,et al.  FPMR: MapReduce framework on FPGA , 2010, FPGA '10.

[10]  S. Nelson,et al.  BFAST: An Alignment Tool for Large Scale Genome Resequencing , 2009, PloS one.

[11]  Ting Chen,et al.  PerM: efficient mapping of short sequencing reads with periodic full sensitive spaced seeds , 2009, Bioinform..

[12]  Cole Trapnell,et al.  Optimizing data intensive GPGPU computations for DNA sequence alignment , 2009, Parallel Comput..

[13]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[14]  Michael Brudno,et al.  SHRiMP: Accurate Mapping of Short Color-space Reads , 2009, PLoS Comput. Biol..

[15]  Michael C. Schatz,et al.  CloudBurst: highly sensitive read mapping with MapReduce , 2009, Bioinform..

[16]  Viktor K. Prasanna,et al.  Multi-Core Architecture on FPGA for Large Dictionary String Matching , 2009, 2009 17th IEEE Symposium on Field Programmable Custom Computing Machines.

[17]  Ying Liu,et al.  A Highly Parameterized and Efficient FPGA-Based Skeleton for Pairwise Biological Sequence Alignment , 2009, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[18]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[19]  Bin Ma,et al.  ZOOM! Zillions of oligos mapped , 2008, Bioinform..

[20]  Wei Lin,et al.  Pipelined Architecture for Multi-String Matching , 2008, IEEE Computer Architecture Letters.

[21]  Giorgio Valle,et al.  CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment , 2008, BMC Bioinformatics.

[22]  Ruiqiang Li,et al.  SOAP: short oligonucleotide alignment program , 2008, Bioinform..

[23]  Sanjay Ghemawat,et al.  MapReduce: simplified data processing on large clusters , 2008, CACM.

[24]  Amitabh Varshney,et al.  High-throughput sequence alignment using Graphics Processing Units , 2007, BMC Bioinformatics.

[25]  Martin C. Herbordt,et al.  Families of FPGA-based accelerators for approximate string matching , 2007, Microprocess. Microsystems.

[26]  Yvan Saeys,et al.  Scalable hardware accelerator for comparing DNA and protein sequences , 2006, InfoScale '06.

[27]  Jan van Lunteren,et al.  High-Performance Pattern-Matching for Intrusion Detection , 2006, INFOCOM.

[28]  Viktor K. Prasanna,et al.  Automatic Synthesis of Efficient Intrusion Detection Systems on FPGAs , 2004, IEEE Transactions on Dependable and Secure Computing.

[29]  Viktor K. Prasanna,et al.  A computationally efficient engine for flexible intrusion detection , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[30]  Timothy Sherwood,et al.  A high throughput string matching architecture for intrusion detection and prevention , 2005, 32nd International Symposium on Computer Architecture (ISCA'05).

[31]  Thomas D. Wu,et al.  GMAP: a genomic mapping and alignment program for mRNA and EST sequence , 2005, Bioinform..

[32]  Paul D. Franzon,et al.  Configurable string matching hardware for speeding up intrusion detection , 2005, CARN.

[33]  S. Salzberg,et al.  Versatile and open software for comparing large genomes , 2004, Genome Biology.

[34]  Dionisios N. Pnevmatikatos,et al.  Fast, Large-Scale String Match for a 10Gbps FPGA-Based Network Intrusion Detection System , 2003, FPL.

[35]  J. Mullikin,et al.  SSAHA: a fast search method for large DNA databases. , 2001, Genome research.

[36]  Giovanni Manzini,et al.  Opportunistic data structures with applications , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[37]  Ricardo A. Baeza-Yates,et al.  Fast and Practical Approximate String Matching , 1992, Inf. Process. Lett..

[38]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[39]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[40]  Alfred V. Aho,et al.  Efficient string matching , 1975, Commun. ACM.