Sensortechnologien durch neuartige Materialien und Moleküle

[1]  T. Swager,et al.  Simultaneous Identification of Neutral and Anionic Species in Complex Mixtures without Separation. , 2016, Angewandte Chemie.

[2]  Joseph M Azzarelli,et al.  Nanowire Chemical/Biological Sensors: Status and a Roadmap for the Future. , 2015, Angewandte Chemie.

[3]  T. Swager,et al.  Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. , 2008, Journal of the American Chemical Society.

[4]  Timothy M. Swager,et al.  Selektiver Nachweis von Ethylengas mit Kohlenstoffnanoröhren als Hilfsmittel in der Fruchtreifebestimmung , 2012 .

[5]  Michael S Strano,et al.  A Ratiometric Sensor Using Single Chirality Near-Infrared Fluorescent Carbon Nanotubes: Application to In Vivo Monitoring. , 2015, Small.

[6]  D. Rugar,et al.  Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor , 2013, Science.

[7]  Bing Yan,et al.  SERS tags: novel optical nanoprobes for bioanalysis. , 2013, Chemical reviews.

[8]  T. Swager,et al.  Covalent Functionalization of Carbon Nanomaterials with Iodonium Salts , 2016 .

[9]  Lauren D. Zarzar,et al.  Optical visualization and quantification of enzyme activity using dynamic droplet lenses , 2017, Proceedings of the National Academy of Sciences.

[10]  Lauren D. Zarzar,et al.  Reconfigurable and responsive droplet-based compound micro-lenses , 2017, Nature Communications.

[11]  Vishnu Sresht,et al.  Dynamically reconfigurable complex emulsions via tunable interfacial tensions , 2015, Nature.

[12]  Alexander Baev,et al.  Manipulating Magneto-Optic Properties of a Chiral Polymer by Doping with Stable Organic Biradicals. , 2016, Nano letters.

[13]  Shannon E. Stitzel,et al.  Cross-reactive chemical sensor arrays. , 2000, Chemical reviews.

[14]  Beate Paulus,et al.  Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications , 2017, Nature Communications.

[15]  Ernesto Danieli,et al.  Kleine Magnete für NMR‐Spektroskopie vor Ort , 2010 .

[16]  Gungun Lin,et al.  Magnetic sensing platform technologies for biomedical applications. , 2017, Lab on a chip.

[17]  T. Swager,et al.  Fluorescent Porous Polymer Films as TNT Chemosensors: Electronic and Structural Effects , 1998 .

[18]  Timothy M. Swager,et al.  Nanodrähte in Chemo‐ und Biosensoren: aktueller Stand und Fahrplan für die Zukunft , 2016 .

[19]  T. Swager,et al.  Single-walled carbon nanotube/metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage. , 2015, Angewandte Chemie.

[20]  Colin J. Cumming,et al.  Using novel fluorescent polymers as sensory materials for above-ground sensing of chemical signature compounds emanating from buried landmines , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  Palash Gangopadhyay,et al.  Magneto-optic Properties of Regioregular Polyalkylthiophenes† , 2011 .

[22]  Takeshi Tanaka,et al.  Metallic versus Semiconducting SWCNT Chemiresistors: A Case for Separated SWCNTs Wrapped by a Metallosupramolecular Polymer. , 2017, ACS applied materials & interfaces.

[23]  Masahiro Abe,et al.  Large Faraday Rotation in a π-Conjugated Poly(arylene ethynylene) Thin Film , 2009 .

[24]  T. Swager,et al.  Selective detection of ethylene gas using carbon nanotube-based devices: utility in determination of fruit ripeness. , 2012, Angewandte Chemie.

[25]  Maria K. LaGasse,et al.  An optoelectronic nose for identification of explosives† †Electronic supplementary information (ESI) available: Sampling details, handheld reader details, additional array response data, PCA component score plots, 1H-NMR of DMDNB and PETN. See DOI: 10.1039/c5sc02632f , 2015, Chemical science.

[26]  D. Budker,et al.  Optical magnetometry - eScholarship , 2006, physics/0611246.

[27]  Boris Murmann,et al.  Matrix-insensitive protein assays push the limits of biosensors in medicine , 2009, Nature Medicine.

[28]  T. Swager,et al.  Conjugated polymer-based chemical sensors. , 2000, Chemical reviews.

[29]  Bora Yoon,et al.  Wireless Oxygen Sensors Enabled by Fe(II)-Polymer Wrapped Carbon Nanotubes. , 2017, ACS sensors.

[30]  Y. Weizmann,et al.  Sensory Arrays of Covalently Functionalized Single‐Walled Carbon Nanotubes for Explosive Detection , 2013 .

[31]  Fei Wang,et al.  Diverse chemiresistors based upon covalently modified multiwalled carbon nanotubes. , 2011, Journal of the American Chemical Society.

[32]  Peter H. Seeberger,et al.  Janus Emulsions for the Detection of Bacteria , 2017, ACS central science.

[33]  E. Danieli,et al.  Small magnets for portable NMR spectrometers. , 2010, Angewandte Chemie.

[34]  Timothy M. Swager,et al.  Wireless Hazard Badges to Detect Nerve-Agent Simulants. , 2016, Angewandte Chemie.

[35]  Gunther Hennrich,et al.  Giant Faraday Rotation in Mesogenic Organic Molecules , 2013 .

[36]  Georgios Markopoulos,et al.  19F NMR Fingerprints: Identification of Neutral Organic Compounds in a Molecular Container , 2014, Journal of the American Chemical Society.

[37]  Qin Zhou,et al.  Method for enhancing the sensitivity of fluorescent chemosensors: energy migration in conjugated polymers , 1995 .

[38]  Richard W. Taylor,et al.  Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril "glue". , 2011, ACS nano.

[39]  Morteza Mahmoudi,et al.  Themed Issue: Chemical and Biological Detection Chemical Society Reviews Optical Sensor Arrays for Chemical Sensing: the Optoelectronic Nose , 2022 .