Learning Subject-Generalized Topographical EEG Embeddings Using Deep Variational Autoencoders and Domain-Adversarial Regularization

Two of the biggest challenges in building models for detecting emotions from electroencephalography (EEG) devices are the relatively small amount of labeled samples and the strong variability of signal feature distributions between different subjects. In this study, we propose a context-generalized model that tackles the data constraints and subject variability simultaneously using a deep neural network architecture optimized for normally distributed subject-independent feature embeddings. Variational autoencoders (VAEs) at the input level allow the lower feature layers of the model to be trained on both labeled and unlabeled samples, maximizing the use of the limited data resources. Meanwhile, variational regularization encourages the model to learn Gaussian-distributed feature embeddings, resulting in robustness to small dataset imbalances. Subject-adversarial regularization applied to the bi-lateral features further enforces subject-independence on the final feature embedding used for emotion classification. The results from subject-independent performance experiments on the SEED and DEAP EEG-emotion datasets show that our model generalizes better across subjects than other state-of-the-art feature embeddings when paired with deep learning classifiers. Furthermore, qualitative analysis of the embedding space reveals that our proposed subject-invariant bi-lateral variational domain adversarial neural network (BiVDANN) architecture may improve the subject-independent performance by discovering normally distributed features.

[1]  K. R. Seeja,et al.  Subject independent emotion recognition from EEG using VMD and deep learning , 2019, J. King Saud Univ. Comput. Inf. Sci..

[2]  Yun Luo,et al.  WGAN Domain Adaptation for EEG-Based Emotion Recognition , 2018, ICONIP.

[3]  François Chollet,et al.  Keras: The Python Deep Learning library , 2018 .

[4]  Bernhard Schölkopf,et al.  Measuring Statistical Dependence with Hilbert-Schmidt Norms , 2005, ALT.

[5]  D.J. Thomson,et al.  Jackknifing Multitaper Spectrum Estimates , 2007, IEEE Signal Processing Magazine.

[6]  M. Rajya Lakshmi,et al.  Survey on EEG Signal Processing Methods , 2014 .

[7]  Ivor W. Tsang,et al.  Domain Adaptation via Transfer Component Analysis , 2009, IEEE Transactions on Neural Networks.

[8]  LinLin Shen,et al.  Deep Feature Consistent Variational Autoencoder , 2016, 2017 IEEE Winter Conference on Applications of Computer Vision (WACV).

[9]  Tzyy-Ping Jung,et al.  Evaluation of Artifact Subspace Reconstruction for Automatic EEG Artifact Removal , 2018, 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[10]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[11]  Dominique Zosso,et al.  Variational Mode Decomposition , 2014, IEEE Transactions on Signal Processing.

[12]  Yongxin Yang,et al.  Deeper, Broader and Artier Domain Generalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[13]  Toby P. Breckon,et al.  Simulating Brain Signals: Creating Synthetic EEG Data via Neural-Based Generative Models for Improved SSVEP Classification , 2019, 2019 International Joint Conference on Neural Networks (IJCNN).

[14]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[15]  Hod Lipson,et al.  Understanding Neural Networks Through Deep Visualization , 2015, ArXiv.

[16]  Stephen M. Gordon,et al.  EEGNet: A Compact Convolutional Neural Network for EEG-based Brain-Computer Interfaces , 2021 .

[17]  Shuai Wang,et al.  EEG Classification of Motor Imagery Using a Novel Deep Learning Framework , 2019, Sensors.

[18]  Lei Wang,et al.  A Novel Bi-Hemispheric Discrepancy Model for EEG Emotion Recognition , 2019, IEEE Transactions on Cognitive and Developmental Systems.

[19]  Yang Li,et al.  A Bi-Hemisphere Domain Adversarial Neural Network Model for EEG Emotion Recognition , 2021, IEEE Transactions on Affective Computing.

[20]  Hang Li,et al.  Variation Autoencoder Based Network Representation Learning for Classification , 2017, ACL.

[21]  Bao-Liang Lu,et al.  Differential entropy feature for EEG-based emotion classification , 2013, 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER).

[22]  Qisong Wang,et al.  Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition , 2016, Comput. Biol. Medicine.

[23]  P. Comon,et al.  Ica: a potential tool for bci systems , 2008, IEEE Signal Processing Magazine.

[24]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[25]  Tiago H. Falk,et al.  Deep learning-based electroencephalography analysis: a systematic review , 2019, Journal of neural engineering.

[26]  Diane J. Cook,et al.  A Survey of Unsupervised Deep Domain Adaptation , 2018, ACM Trans. Intell. Syst. Technol..

[27]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Wolfram Burgard,et al.  Deep learning with convolutional neural networks for EEG decoding and visualization , 2017, Human brain mapping.

[29]  Jen-Tzung Chien,et al.  Variational Domain Adversarial Learning for Speaker Verification , 2019, INTERSPEECH.

[30]  Thierry Pun,et al.  DEAP: A Database for Emotion Analysis ;Using Physiological Signals , 2012, IEEE Transactions on Affective Computing.

[31]  Mohammed Yeasin,et al.  Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks , 2015, ICLR.

[32]  J. Zico Kolter,et al.  Overfitting in adversarially robust deep learning , 2020, ICML.

[33]  Donald B. Percival,et al.  Spectral Analysis for Physical Applications , 1993 .

[34]  Martin Luessi,et al.  MNE software for processing MEG and EEG data , 2014, NeuroImage.

[35]  Gernot R. Müller-Putz,et al.  Domain Adaptation Techniques for EEG-Based Emotion Recognition: A Comparative Study on Two Public Datasets , 2019, IEEE Transactions on Cognitive and Developmental Systems.

[36]  Michael Rabadi,et al.  Kernel Methods for Machine Learning , 2015 .

[37]  M Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update , 2018, Journal of neural engineering.

[38]  Hung T. Nguyen,et al.  Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine , 2015, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[39]  Muhammad Ghifary,et al.  Domain Adaptation and Domain Generalization with Representation Learning , 2016 .

[40]  Christopher Burgess,et al.  beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework , 2016, ICLR 2016.

[41]  Diederik P. Kingma,et al.  An Introduction to Variational Autoencoders , 2019, Found. Trends Mach. Learn..

[42]  Martin Luessi,et al.  MEG and EEG data analysis with MNE-Python , 2013, Front. Neuroinform..

[43]  Masayuki Numao,et al.  Deep Visual Models for EEG of Mindfulness Meditation in a Workplace Setting , 2019, Precision Health and Medicine.

[44]  Mohammad Soleymani,et al.  Analysis of EEG Signals and Facial Expressions for Continuous Emotion Detection , 2016, IEEE Transactions on Affective Computing.

[45]  Quan Pan,et al.  Disentangled Variational Auto-Encoder for Semi-supervised Learning , 2017, Inf. Sci..

[46]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[47]  Chi Zhang,et al.  Emotion Recognition from EEG Signals Using Multidimensional Information in EMD Domain , 2017, BioMed research international.

[48]  Gunnar Rätsch,et al.  Kernel PCA and De-Noising in Feature Spaces , 1998, NIPS.

[49]  Bao-Liang Lu,et al.  Emotional state classification from EEG data using machine learning approach , 2014, Neurocomputing.

[50]  Russell Beale,et al.  The Role of Affect and Emotion in HCI , 2008, Affect and Emotion in Human-Computer Interaction.

[51]  Guillaume Desjardins,et al.  Understanding disentangling in β-VAE , 2018, ArXiv.

[52]  Pasin Israsena,et al.  Emotion classification using minimal EEG channels and frequency bands , 2013, The 2013 10th International Joint Conference on Computer Science and Software Engineering (JCSSE).

[53]  Sang Guun Yoo,et al.  EEG-Based BCI Emotion Recognition: A Survey , 2020, Sensors.

[54]  David Zhang,et al.  Learning Domain-Invariant Subspace Using Domain Features and Independence Maximization , 2016, IEEE Transactions on Cybernetics.

[55]  Changde Du,et al.  Domain Adaptation for EEG Emotion Recognition Based on Latent Representation Similarity , 2020, IEEE Transactions on Cognitive and Developmental Systems.

[56]  K. Luan Phan,et al.  Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging , 2003, NeuroImage.

[57]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[58]  Erhan Ekmekcioglu,et al.  Investigating the Use of Pretrained Convolutional Neural Network on Cross-Subject and Cross-Dataset EEG Emotion Recognition , 2020, Sensors.

[59]  Mei Wang,et al.  Deep Visual Domain Adaptation: A Survey , 2018, Neurocomputing.

[60]  Christopher K. I. Williams,et al.  Robust Variational Autoencoders for Outlier Detection and Repair of Mixed-Type Data , 2020, AISTATS.

[61]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[62]  Minh Le Nguyen,et al.  DGCNN: A convolutional neural network over large-scale labeled graphs , 2018, Neural Networks.

[63]  Cuntai Guan,et al.  Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[64]  Bao-Liang Lu,et al.  Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks , 2015, IEEE Transactions on Autonomous Mental Development.