Asymptotic Enumeration of Sparse Uniform Linear Hypergraphs with Given Degrees

A hypergraph is simple if it has no loops and no repeated edges, and a hypergraph is  linear  if it is simple and each pair of edges intersects in at most one vertex. For $n\geq 3$, let $r= r(n)\geq 3$ be an integer and let $\boldsymbol{k} = (k_1,\ldots, k_n)$ be a vector of nonnegative integers, where each $k_j = k_j(n)$ may depend on $n$. Let $M = M(n) = \sum_{j=1}^n k_j$ for all $n\geq 3$, and define the set $\mathcal{I} = \{ n\geq 3 \mid r(n) \text{ divides } M(n)\}$. We assume that $\mathcal{I}$ is infinite, and perform asymptotics as $n$ tends to infinity along $\mathcal{I}$. Our main result is an asymptotic enumeration formula for linear $r$-uniform hypergraphs with degree sequence $\boldsymbol{k}$. This formula holds whenever the maximum degree $k_{\max}$ satisfies $r^4 k_{\max}^4(k_{\max} + r) = o(M)$. Our approach is to work with the incidence matrix of a hypergraph, interpreted as the biadjacency matrix of a bipartite graph, enabling us to apply known enumeration results for bipartite graphs. This approach also leads to a new asymptotic enumeration formula for simple uniform hypergraphs with specified degrees, and a result regarding the girth of random bipartite graphs with specified degrees.

[1]  Alexandr V. Kostochka,et al.  Coloring uniform hypergraphs with few edges , 2009, Random Struct. Algorithms.

[2]  Brendan D. McKay,et al.  Subgraphs of random graphs with specified degrees , 2011 .

[3]  Steffen Klamt,et al.  Hypergraphs and Cellular Networks , 2009, PLoS Comput. Biol..

[4]  Alan M. Frieze,et al.  Perfect Matchings in Random r-regular, s-uniform Hypergraphs , 1996, Combinatorics, Probability and Computing.

[5]  Shachar Lovett,et al.  Probabilistic existence of regular combinatorial structures , 2011, ArXiv.

[6]  Brendan D. McKay,et al.  Short Cycles in Random Regular Graphs , 2004, Electron. J. Comb..

[7]  Andrzej Dudek,et al.  Approximate counting of regular hypergraphs , 2013, Inf. Process. Lett..

[8]  Claude Berge,et al.  Hypergraphs - combinatorics of finite sets , 1989, North-Holland mathematical library.

[9]  Bruce A. Reed,et al.  Properly 2-Colouring Linear Hypergraphs , 2007, APPROX-RANDOM.

[10]  Guido Caldarelli,et al.  Random hypergraphs and their applications , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Brendan D. McKay,et al.  Asymptotic enumeration by degree sequence of graphs with degreeso(n1/2) , 1991, Comb..

[12]  Brendan D. McKay,et al.  Asymptotic Enumeration by Degree Sequence of Graphs of High Degree , 1990, Eur. J. Comb..

[13]  Catherine S. Greenhill,et al.  Asymptotic enumeration of sparse uniform hypergraphs with given degrees , 2016, Eur. J. Comb..

[14]  Alexandr V. Kostochka,et al.  Coloring uniform hypergraphs with few edges , 2009 .

[15]  Brendan D. McKay,et al.  Asymptotic enumeration of sparse 0-1 matrices with irregular row and column sums , 2006, J. Comb. Theory, Ser. A.

[16]  Brendan D. McKay,et al.  Asymptotic Enumeration of Sparse Multigraphs with Given Degrees , 2013, SIAM J. Discret. Math..

[17]  N. Wormald Some problems in the enumeration of labelled graphs , 1980, Bulletin of the Australian Mathematical Society.

[18]  J. A. Rodríguez-Velázquez,et al.  Subgraph centrality and clustering in complex hyper-networks , 2006 .

[19]  Alan M. Frieze,et al.  Randomly coloring simple hypergraphs , 2011, Inf. Process. Lett..

[20]  Brendan D. McKay,et al.  Subgraphs of Dense Random Graphs with Specified Degrees , 2010, Combinatorics, Probability and Computing.