Small is beautiful: The analysis of nanogram‐sized astromaterials

Abstract— The capability of modern methods to characterize ultra‐small samples is well established from analysis of interplanetary dust particles (IDPs), interstellar grains recovered from meteorites, and other materials requiring ultra‐sensitive analytical capabilities. Powerful analytical techniques are available that require, under favorable circumstances, single particles of only a few nanograms for entire suites of fairly comprehensive characterizations. A returned sample of > 1000 particles with total mass of just 1 μg permits comprehensive quantitative geochemical measurements that are impractical to carry out in situ by flight instruments. The main goal of this paper is to describe the state‐of‐the‐art in microanalysis of astromaterials.

[1]  R. Clayton Oxygen Isotopes in Meteorites , 2003 .

[2]  M. Zolensky,et al.  Florenskyite, FeTiP, a new phosphide from the Kaidun meteorite , 2000 .

[3]  K. V. Sankar,et al.  Characterization of magnetite particles in shocked quartz by means of electron- and magnetic force microscopy: Vredefort, South Africa , 1999 .

[4]  T. Stephan,et al.  Surface analysis of stratospheric dust particles , 1999 .

[5]  V. N. Sobolev,et al.  Precise Mössbauer milliprobe determination of ferric iron in rock-forming minerals and limitations of electron microprobe analysis , 1999 .

[6]  A. Boyce,et al.  Development and use of in situ laser sulfur isotope analyses for pyrite-anhydrite geothermometry: An example from the pyrite deposits of the Cameros Basin, NE Spain , 1999 .

[7]  Christiane Wagner,et al.  Trace element analysis with the electron microprobe: New data and perspectives , 1999 .

[8]  R. Wiens,et al.  The solar oxygen‐isotopic composition: Predictions and implications for solar nebula processes , 1999 .

[9]  P. Buseck,et al.  Ratios of ferrous to ferric iron from nanometre-sized areas in minerals , 1998, Nature.

[10]  P. Dove,et al.  Thermodynamics of calcite growth: baseline for understanding biomineral formation , 1998, Science.

[11]  R. Zenobi,et al.  New sample preparation for quantitative laser desorption mass spectrometry and optical spectroscopy , 1998 .

[12]  Russell,et al.  Oxygen reservoirs in the early solar nebula inferred from an allende CAI , 1998, Science.

[13]  C. Pantano,et al.  The influence of natural mineral coatings on feldspar weathering , 1998, Nature.

[14]  D. Coutts,et al.  UV laser ablation and irm-GCMS microanalysis of 18O/16O and 17O/16O with application to a calcium-aluminium-rich inclusion from the Allende meteorite , 1998 .

[15]  L. Nittler,et al.  Meteoritic oxide grain from supernova found , 1998, Nature.

[16]  S. Sahijpal,et al.  In situ determination of iodine content and iodine‐xenon systematics in silicates and troilite phases in chondrules from the LL3 chondrite Semarkona , 1998 .

[17]  J. Papike COMPARATIVE PLANETARY MINERALOGY : CHEMISTRY OF MELT-DERIVED PYROXENE, FELDSPAR, AND OLIVINE , 1998 .

[18]  M. Rehkämper,et al.  Applications of Multiple Collector-ICPMS to Cosmochemistry, Geochemistry, and Paleoceanography , 1998 .

[19]  G. Flynn,et al.  Carbon Mapping and Carbon-XANES Bonding State Measurements on Interplanetary Dust Particles , 1998 .

[20]  R. Clayton,et al.  MOLYBDENUM ISOTOPIC COMPOSITION OF INDIVIDUAL PRESOLAR SILICON CARBIDE GRAINS FROM THE MURCHISON METEORITE , 1998 .

[21]  U. Starke,et al.  Holographic Image Reconstruction from Electron Diffraction Intensities of Ordered Superstructures , 1997 .

[22]  L. Danielson,et al.  A chondrule origin for dusty relict olivine in unequilibrated chondrites , 1997 .

[23]  R. Wirth Water in minerals detectable by electron energy-loss spectroscopy EELS , 1997 .

[24]  F. Seifert,et al.  ELNES spectroscopy of mixed Si coordination minerals , 1997 .

[25]  G. Molin,et al.  Transmission electron microscope texture and crystal chemistry of coexisting ortho‐ and clinopyroxene in the Antarctic ureilite Frontier Mountain 90054: Implications for thermal history , 1997 .

[26]  Hailiang Dong,et al.  Laser 40Ar39Ar dating of microgram-size illite samples and implications for thin section dating☆ , 1997 .

[27]  E. Peterson,et al.  Modification of amino acids at shock pressures of 3.5 to 32 GPa. , 1997, Geochimica et cosmochimica acta.

[28]  R. Clayton,et al.  s-Process Zirconium in Presolar Silicon Carbide Grains , 1997 .

[29]  K. Janssens,et al.  The use of a scanning X-ray microprobe for simultaneous XRF/XRD studies of fly-ash particles. , 1997, Journal of synchrotron radiation.

[30]  H. Longerich,et al.  In situ trace-element analysis of individual silicate melt inclusions by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) , 1997 .

[31]  M. Zolensky,et al.  The porosity and permeability of chondritic meteorites and interplanetary dust particles , 1997 .

[32]  S. Reddy,et al.  A microstructural and argon laserprobe study of shear zone development at the western margin of the Nanga Parbat–Haramosh Massif, western Himalaya , 1997 .

[33]  E. Zinner Presolar material in meteorites: an overview , 1997 .

[34]  R. Clayton,et al.  Isotopic Analysis of Ca from Extraterrestrial Micrometer-Sized SiC by Laser Desorption and Resonant Ionization Mass Spectroscopy , 1997 .

[35]  M. Phillips,et al.  Cathodoluminescence microanalysis of natural hydrated amorphous SiO2; opal , 1997 .

[36]  H. McSween,et al.  A comparison of sulfur isotope ratio measurement using two ion microprobe techniques and application to analysis of troilite in ordinary chondrites , 1997 .

[37]  L. Leshin,et al.  The oxygen isotopic composition of olivine and pyroxene from CI chondrites , 1997 .

[38]  I. Villa DIRECT DETERMINATION OF 39AR RECOIL DISTANCE , 1997 .

[39]  C. Pillinger,et al.  The content and stable isotopic composition of carbon in individual micrometeorites from Greenland and Antarctica , 1997 .

[40]  E. Jessberger,et al.  The elemental abundances in interplanetary dust particles , 1996 .

[41]  L. Taylor,et al.  QUE94201 shergottite: Crystallization of a Martian basaltic magma , 1996 .

[42]  Michael E. Zolensky,et al.  Correlated alteration effects in CM carbonaceous chondrites , 1996 .

[43]  R. Oberhänsli,et al.  The determination of the oxidation state of iron in synthetic garnets by X-ray spectroscopy with the electron microprobe , 1996 .

[44]  J. Papike Pyroxene as a recorder of cumulate formational processes in asteroids, Moon, Mars, Earth: Reading the record with the ion microprobe , 1996 .

[45]  P. Hoppe,et al.  Type II Supernova Matter in a Silicon Carbide Grain from the Murchison Meteorite , 1996, Science.

[46]  D. Brownlee,et al.  Reflectance spectroscopy of interplanetary dust particles , 1996 .

[47]  P. Hoppe,et al.  Small SiC grains and a nitride grain of circumstellar origin from the Murchison meteorite: implications for stellar evolution and nucleosynthesis. , 1996, Geochimica et cosmochimica acta.

[48]  R. Egerton,et al.  Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.

[49]  D. Garrison,et al.  39Ar40Ar age of the Ibitira eucrite and constraints on the time of pyroxene equilibration , 1995 .

[50]  G. Flynn,et al.  An asteroidal breccia: The anatomy of a cluster IDP , 1995 .

[51]  M. Zolensky,et al.  Iron and iron-nickel sulfides in chondritic interplanetary dust particles , 1995 .

[52]  A. Brearley,et al.  Exsolution in Ferromagnesian Olivine of the Divnoe Meteorite , 1994, Science.

[53]  T. Stephan,et al.  TOF-SIMS analysis of interplanetary dust , 1994 .

[54]  M. Zolensky,et al.  Compositional variations of olivines and pyroxenes in chondritic interplanetary dust particles , 1994 .

[55]  P. Hoppe,et al.  Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison carbonaceous chondrite , 1994 .

[56]  R. Brydson,et al.  Use of electron-energy loss near-edge fine structure in the study of minerals , 1994 .

[57]  J. Bradley Nanometer-scale mineralogy and petrography of fine-grained aggregates in anhydrous interplanetary dust particles , 1994 .

[58]  Gwyn P. Williams,et al.  Infrared microspectroscopy at the NSLS , 1994 .

[59]  A. Nier,et al.  The thermal history of interplanetary dust particles collected in the Earth's stratosphere , 1993 .

[60]  Carle M. Pieters,et al.  Optical effects of space weathering: The role of the finest fraction , 1993 .

[61]  R N Zare,et al.  Identification of Complex Aromatic Molecules in Individual Interplanetary Dust Particles , 1993, Science.

[62]  E. Anders,et al.  Interstellar Grains in Primitive Meteorites: Diamond, Silicon Carbide, and Graphite , 1993 .

[63]  H. Fechtig,et al.  Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft , 1993, Nature.

[64]  J. Barrow Memories of the future , 1993, Nature.

[65]  K. Foland,et al.  40Ar39Ar dating of very fine-grained samples: An encapsulated-vial procedure to overcome the problem of 39Ar recoil loss , 1992 .

[66]  J. Bradley,et al.  Combined infrared and analytical electron microscope studies of interplanetary dust particles , 1992 .

[67]  A. Nier,et al.  Extraction of helium from individual interplanetary dust particles by step-heating , 1992 .

[68]  E. Anders Organic matter in meteorites and comets: Possible origins , 1991 .

[69]  E. Jessberger Discussion: New techniques on the horizon for the analysis of the inorganic cometary components , 1991 .

[70]  G. Turner Can one date a comet and its constituents? A note , 1991 .

[71]  R. Zare,et al.  Organic chemical analysis on a microscopic scale using two-step laser desorption/laser ionization mass spectrometry , 1991 .

[72]  E. Zinner Cometary and interstellar dust grains: Analysis by ion microprobe mass spectrometry and other techniques , 1991 .

[73]  E. Jessberger Discussion: What new techniques are needed for the analysis of the organic cometary components? , 1991 .

[74]  R N Zare,et al.  Spatially Resolved Organic Analysis of the Allende Meteorite , 1989, Science.

[75]  Horton E. Newsom,et al.  V, Cr, and Mn in the earth, moon, EPB, and SPB and the origin of the moon - Experimental studies , 1989 .

[76]  D. Brownlee,et al.  Automated thin-film analyses of anhydrous interplanetary dust particles in the analytical electron microscope , 1989 .

[77]  W. Bassett Synchrotron Radiation: Applications in the Earth Sciences , 1988 .

[78]  B. Wopenka Raman observations on individual interplanetary dust particles , 1988 .

[79]  R. Zare,et al.  Application of Two-Step Laser Mass Spectrometry to Cosmogeochemistry: Direct Analysis of Meteorites , 1988, Science.

[80]  K. McKeegan Oxygen Isotopes in Refractory Stratospheric Dust Particles: Proof of Extraterrestrial Origin , 1987, Science.

[81]  G. Binnig,et al.  Scanning tunneling microscopy-from birth to adolescence , 1987 .

[82]  J. C. Seitz,et al.  Characterization of CO2CH4H2O fluid inclusions by microthermometry and laser Raman microprobe spectroscopy: Inferences for clathrate and fluid equilibria , 1987 .

[83]  F. R. Krueger,et al.  The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1 , 1987, Nature.

[84]  J. N. Barrows,et al.  The Allende meteorite reference sample , 1987 .

[85]  G. Waychunas Synchrotron radiation XANES spectroscopy of Ti in minerals; effects of Ti bonding distances, Ti valence, and site geometry on absorption edge structure , 1987 .

[86]  S. Sandford Solar flare track densities in interplanetary dust particles The determination of an asteroidal versus cometary source of the zodiacal dust cloud , 1986 .

[87]  C. Pillinger,et al.  Measurement of carbon stable isotopes at the nanomole level: a static mass spectrometer and sample preparation technique , 1986 .

[88]  U. Ott,et al.  Are all the ‘martian’ meteorites from Mars? , 1985, Nature.

[89]  K. McKeegan,et al.  Ion microprobe isotopic measurements of individual interplanetary dust particles , 1985 .

[90]  J. Wasson Meteorites: Their Record of Early Solar-System History , 1985 .

[91]  S. Sandford Laboratory infrared transmission spectra of individual interplanetary dust particles from 2 , 1985 .

[92]  D. Brownlee,et al.  Discovery of Nucler Tracks in Interplanetary Dust , 1984, Science.

[93]  K. McKeegan,et al.  Laboratory measurements of D/H ratios in interplanetary dust , 1983, Nature.

[94]  H. Newsom,et al.  The metal content of the eucrite parent body: constraints from the partitioning behavior of tungsten , 1982 .

[95]  J. Dubessy,et al.  The use of the Raman microprobe MOLE in the determination of the electrolytes dissolved in the aqueous phase of fluid inclusions , 1982 .

[96]  M. Zolensky,et al.  Identification of fluid inclusion daughter minerals using Gandolfi X-ray techniques , 1982 .

[97]  K. Keil,et al.  Pyroxenes in Serra de Mage - Cooling history in comparison with Moama and Moore County , 1979 .

[98]  P. A. Baedecker,et al.  Compositional evidence regarding the influx of interplanetary materials onto the lunar surface , 1975 .

[99]  J. Papike,et al.  Apollo 14 inverted pigeonites: possible samples of lunar plutonic rocks , 1972 .

[100]  G. Brown,et al.  Apollo 12 clinopyroxenes - Exsolution and epitaxy , 1971 .

[101]  M. Rowe Evidence for decay of extinct Pu244 and I129 in the Kapoeta meteorite , 1970 .

[102]  G. Mamikunian,et al.  Organic constituents of the carbonaceous chondrites , 1963, Life sciences and space research.

[103]  Hajime Yano,et al.  Origins of micro-craters on the SFU spacecraft derived from elemental and morphological analyses , 2000 .

[104]  L. Leshin,et al.  Oxygen Isotopic Constraints on the Genesis of Carbonates from Martian Meteorite ALH84001 , 1998 .

[105]  Timothy J. McCoy,et al.  Non-chondritic meteorites from asteroidal bodies , 1998 .

[106]  Koen Janssens,et al.  Use of lead-glass capillaries for micro-focusing of highly-energetic (0–60 keV) synchrotron radiation , 1998 .

[107]  I. Chou,et al.  Fluid-Deposited Graphitic Inclusions in Quartz: Comparison Between KTB (German Continental Deep-Drilling) Core Samples and Artificially Reequilibrated Natural Inclusions , 1998 .

[108]  Frans J. M. Rietmeijer,et al.  Interplanetary dust particles , 1998 .

[109]  A. Greshake The primitive matrix components of the unique carbonaceous chondrite Acfer 094: a TEM study. , 1997, Geochimica et cosmochimica acta.

[110]  C. Pillinger,et al.  An appraisal of stepped heating release of fluid inclusion CO2 for isotopic analysis: A preliminary to δ13C characterisation of carbonaceous vesicles at the nanomole level , 1997 .

[111]  T. Nakamura,et al.  Impact-induced loss of primordial noble gases from experimentally shocked Allende meteorite. , 1997 .

[112]  S. Kelley Ar-Ar dating by laser microprobe , 1995 .

[113]  Lawrence Weschler,et al.  Mr. Wilson's Cabinet of Wonder , 1995 .

[114]  D. Günther,et al.  Laser ablation microprobe-inductively coupled plasma-mass spectrometry , 1995 .

[115]  Lucy Berthoud,et al.  ANALYSIS OF INTERPLANETARY DUST , 1994 .

[116]  M. Zolensky,et al.  Collection and curation of interplanetary dust particles recovered from the stratosphere by NASA , 1994 .

[117]  D. York,et al.  First successful 40Ar-39Ar dating of glauconies: Argon recoil in single grains of cryptocrystalline material , 1993 .

[118]  R. Jones On the relationship between isolated and chondrule olivine grains in the carbonaceous chondrite ALHA77307 , 1992 .

[119]  M. Zolensky,et al.  Mineralogy of 12 large "chondritic" interplanetary dust particles. , 1992 .

[120]  M. Zolensky,et al.  Suitability of silica aerogel as a capture medium for interplanetary dust , 1992 .

[121]  G. Flynn,et al.  Cosmic dust particle densities - Evidence for two populations of stony micrometeorites , 1991 .

[122]  B. G. Yacobi,et al.  Cathodoluminescence Microscopy of Inorganic Solids , 1990, Springer US.

[123]  G. Flynn,et al.  Synchrotron X-ray fluorescence analyses of stratospheric cosmic dust - New results for chondritic and low-nickel particles , 1990 .

[124]  P. McMillan Raman Spectroscopy in Mineralogy and Geochemistry , 1989 .

[125]  B. Clark,et al.  Systematics of the CHON and other light-element particle populations in Comet Halley , 1988 .

[126]  Dale P. Cruikshank,et al.  Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets , 1988 .

[127]  J. Reisse,et al.  Organic matter in carbonaceous chondrites , 1987 .

[128]  E. Jessberger,et al.  PIXE-characterization of stratospheric micrometeorites , 1986 .

[129]  D. Burnett,et al.  IN SITU TRACE ELEMENT MICROANAL YSISI , 1983 .

[130]  R. Walker Laboratory studies of interplanetary dust , 1982 .

[131]  Basaltic Volcanism Study Basaltic volcanism on the terrestrial planets , 1981 .

[132]  E. Anders,et al.  Organic compounds in meteorites and their origins , 1981 .

[133]  P. Fraundorf,et al.  Chemical and structural studies of "Brownlee" particles. , 1978 .

[134]  H. Takeda,et al.  Characterization of crust formation on a parent body of achondrites and the moon by pyroxene crystallography and chemistry , 1976 .

[135]  H. Takeda,et al.  Relative cooling rates of mare basalts at the Apollo 12 and 15 sites as estimated from pyroxene exsolution data , 1975 .

[136]  J. Dixon,et al.  Petrology of anorthosites from the Descartes region of the moon - Apollo 16 , 1975 .

[137]  J. Papike,et al.  Pyroxenes as recorders of lunar basalt petrogenesis - Chemical trends due to crystal-liquid interaction. , 1972 .

[138]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .