Three‐dimensional photothermal radiometry for the determination of the thermal diffusivity of solids

A radiometric method for measuring the thermal diffusivity of solids is presented. This method is based on the dynamic detection of an ac‐temperature three‐dimensional‐distribution induced by the application of a localized and periodic optical excitation. Specifically the signal phase profile of the ac‐temperature was detected along the sample surface. This procedure gives direct information on the material thermal diffusion length and, therefore, on its thermal diffusivity. Measurements on different bulk materials (i.e., Poco Graphite AXM‐5Q, Armco Iron, Al2O3, and ZrO2) were performed and compared to the data obtained by the laser‐flash method on the same set of samples. A further investigation on a very thin Si specimen (292 μm) showed the effect of thermal wave reflections at the sample backsurface on the measured thermal diffusivity. All the data obtained with this technique agreed to within 5% with those obtained using the laser‐flash method and with the values taken from the literature for similar ...

[1]  N. Amer,et al.  A contactless method for investigating the thermal properties of thin films , 1987 .

[2]  R. J. Jenkins,et al.  Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity , 1961 .

[3]  J. C. Murphy,et al.  Photothermal measurements using a localized excitation source , 1981 .

[4]  D. Fournier,et al.  Thermal diffusivity measurement of micron-thick semiconductor films by mirage detection , 1987 .

[5]  Andreas Mandelis,et al.  Theory of photothermal-wave diffraction and interference in condensed media , 1989 .

[6]  J. Rantala,et al.  The effects of experimental parameters in the thermal diffusivity measurements of oriented polymer films using mirage effect: Computer simulation , 1992 .

[7]  A. Rosencwaig,et al.  Thermal‐wave depth profiling: Theory , 1982 .

[8]  A. Boccara,et al.  Photothermal deflection spectroscopy and detection. , 1981, Applied optics.

[9]  D. Hasselman,et al.  Thermal diffusivity and conductivity of dense polycrystalline ZrO2 ceramics: a survey , 1987 .

[10]  Jukka Rantala,et al.  Determination of thermal diffusivity of low-diffusivity materials using the mirage method with multiparameter fitting , 1993 .

[11]  A. Salazar,et al.  Thermal diffusivity measurements in solids by the ‘‘mirage’’ technique: Experimental results , 1991 .

[12]  R. L. Thomas,et al.  Mirage-effect measurement of thermal diffusivity. Part II: theory , 1986 .

[13]  A. Salazar,et al.  Thermal diffusivity measurements in opaque solids by the mirage technique in the temperature range from 300 to 1000 K , 1994 .

[14]  M. Bertolotti,et al.  Photothermal deflection applied to thermal diffusivity measurements of ceramic (ferrite) materials , 1988 .

[15]  Svein Otto Kanstad,et al.  Experimental aspects of photothermal radiometry , 1986 .

[16]  E. Scafé,et al.  Thermal and Elastic Properties of Alumina-Silicon Carbide Whisker Composites , 1994 .

[17]  F. Lepoutre,et al.  Mesures de diffusivités thermiques par la méthode photoacoustique et par l'effet mirage , 1982 .

[18]  G. Busse,et al.  Imaging with Optically Generated Thermal Waves , 1985, IEEE Transactions on Sonics and Ultrasonics.

[19]  F. Gasparrini,et al.  Surface states studies in semiconductors by photothermal deflection spectroscopy , 1991 .

[20]  Y. S. Touloukian Thermophysical properties of matter , 1970 .

[21]  M. Bertolotti,et al.  On the photodeflection method applied to low thermal diffusivity measurements , 1993 .

[22]  Darryl P Almond,et al.  Thermal wave testing of plasma-sprayed coatings and a comparison of the effects of coating microstructure on the propagation of thermal and ultrasonic waves , 1985 .

[23]  E. A. Ash,et al.  Scanned image microscopy , 1980 .