Cold Sintering Process: A Novel Technique for Low‐Temperature Ceramic Processing of Ferroelectrics

Research on sintering of dense ceramic materials has been very active in the past decades and still keeps gaining in popularity. Although a number of new techniques have been developed, the sintering process is still performed at high temperatures. Very recently we established a novel protocol, the “Cold Sintering Process (CSP)”, to achieve dense ceramic solids at extraordinarily low temperatures of <300°C. A wide variety of chemistries and composites were successfully densified using this technique. In this article, a comprehensive CSP tutorial will be delivered by employing three classic ferroelectric materials (KH2PO4, NaNO2, and BaTiO3) as examples. Together with detailed experimental demonstrations, fundamental mechanisms, as well as the underlying physics from a thermodynamics perspective, are collaboratively outlined. Such an impactful technique opens up a new way for cost-effective and energy-saving ceramic processing. We hope that this article will provide a promising route to guide future studies on ultralow temperature ceramic sintering or ceramic materials related integration.

[1]  Gregory J. Exarhos,et al.  Glycine-nitrate combustion synthesis of oxide ceramic powders , 1990 .

[2]  C. Randall,et al.  Protocol for Ultralow-Temperature Ceramic Sintering: An Integration of Nanotechnology and the Cold Sintering Process. , 2016, ACS nano.

[3]  Masahiko Shimada,et al.  Transformation of Yttria‐Doped Tetragonal ZrO2 Polycrystals by Annealing in Water , 1985 .

[4]  Zhe Zhao,et al.  Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening , 2002, Nature.

[5]  Masatoshi Adachi,et al.  Barium Titanate Piezoelectric Ceramics Manufactured by Two-Step Sintering , 2007 .

[6]  G. E. Ziegler The Crystal Structure of Sodium Nitrite, NaN O 2 , 1931 .

[7]  K. Niihara,et al.  Fabrication and characteristics of fine-grained BaTiO3 ceramics by spark plasma sintering , 2004 .

[8]  C. Randall,et al.  Structure property relationships in core-shell BaTiO_3–LiF ceramics , 1993 .

[9]  P. Larsen,et al.  NaNO2 + NaNO3 Phase Diagram: New Data from DSC and Raman Spectroscopy , 2006 .

[10]  R. Roy,et al.  Hydrothermal synthesis of fine oxide powders , 2000 .

[11]  G. Pharr,et al.  Further observations on creep enhanced by a liquid phase in porous potassium chloride , 1985 .

[12]  J. Tani,et al.  Lead-Free Barium Titanate Ceramics with Large Piezoelectric Constant Fabricated by Microwave Sintering , 2005 .

[13]  T. Lebey,et al.  Colossal dielectric permittivity of BaTiO3-based nanocrystalline ceramics sintered by spark plasma sintering , 2009 .

[14]  K. C. Patil,et al.  A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials , 1988 .

[15]  Adam J. Stevenson,et al.  Toward Pore-Free Ceramics , 2008, Science.

[16]  Zi-kui Liu,et al.  Effect of local oxygen activity on Ni-BaTiO3 interfacial reactions , 2006 .

[17]  R. Jose,et al.  Characterization, sintering and dielectric properties of nanocrystalline barium titanate synthesized through a modified combustion process , 2009 .

[18]  S. Shozo,et al.  Dielectric Properties of Ferroelectric NaNO2 , 1961 .

[19]  J D Katz Microwave Sintering of Ceramics , 1992 .

[20]  C. Randall,et al.  A Novel Approach to Sintering Nanocrystalline Barium Titanate Ceramics , 2005 .

[21]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[22]  Alexander S. Mukasyan,et al.  Combustion synthesis and nanomaterials , 2008 .

[23]  C. Randall,et al.  Preparation and Size Effect in Pure Nanocrystalline Barium Titanate Ceramics , 2003 .

[24]  W. Buessem,et al.  Phenomenological Theory of High Permittivity in Fine‐Grained Barium Titanate , 1966 .

[25]  Jianguo Zhu,et al.  Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. , 2015, Chemical reviews.

[26]  A M C E James Thomson,et al.  XLII. On certain curious motions observable at the surfaces of wine and other alcoholic liquors , 1855 .

[27]  G. Arlt,et al.  The influence of microstructure on the properties of ferroelectric ceramics , 1990 .

[28]  A. Ragulya Rate-controlled synthesis and sintering of nanocrystalline barium titanate powder , 1998 .

[29]  Price,et al.  Excitation of quasinormal ringing of a Schwarzschild black hole. , 1988, Physical review. D, Particles and fields.

[30]  P. Nanni,et al.  Kinetics and Mechanism of Aqueous Chemical Synthesis of BaTiO3 Particles , 2004 .

[31]  H. G. Scott,et al.  Phase relationships in the zirconia-yttria system , 1975 .

[32]  E. D. Verink,et al.  Preparation of barium titanate films at 55 C by an electrochemical method , 1993 .

[33]  C. Randall,et al.  Advantages of Low Partial Pressure of Oxygen Processing of Alkali Niobate: NaNbO3 , 2014 .

[34]  C. Randall,et al.  Hydrothermal-Assisted Cold Sintering Process: A New Guidance for Low-Temperature Ceramic Sintering. , 2016, ACS applied materials & interfaces.

[35]  S T Aruna,et al.  COMBUSTION SYNTHESIS: AN UPDATE , 2002 .

[36]  Rajarshi Guha,et al.  Origins of concentration gradients for diffusiophoresis. , 2016, Soft matter.

[37]  Vincent Bley,et al.  Hydrothermal synthesis of nanosized BaTiO3 powders anddielectric properties of corresponding ceramics , 2005 .

[38]  H. Schmidt,et al.  Nanoscaled BaTiO3 powders with a large surface area synthesized by precipitation from aqueous solutions: Preparation, characterization and sintering , 2007 .

[39]  R. Kaner,et al.  Synthesis of Refractory Ceramics via Rapid Metathesis Reactions between Solid-State Precursors , 1996 .

[40]  B. Frazer,et al.  X‐ray analysis of the ferroelectric transition in KH2PO4 , 1953 .

[41]  M. Readey,et al.  Effect of Heat Treatment on Grain Size, Phase Assemblage, and Mechanical Properties of 3 mol% Y‐TZP , 1996 .

[42]  J. S. Lee,et al.  Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation. , 2006, The journal of physical chemistry. B.

[43]  J. Majszczyk,et al.  Domain nucleation during polarization reversal in sodium nitrite single crystal , 2000 .

[44]  M. Truter Refinement of a non-centrosymmetrical structure: sodium nitrite , 1954 .

[45]  R. Raj,et al.  Field-assisted sintering of undoped BaTiO3: Microstructure evolution and dielectric permittivity , 2014 .

[46]  François Renard,et al.  Coupling between pressure solution creep and diffusive mass transport in porous rocks , 2002 .

[47]  Sigetosi Tanisaki,et al.  Microdomain Structure in Paraelectric Phase of NaNO2 , 1961 .

[48]  P. Dutta,et al.  Hydrothermal synthesis of tetragonal barium titanate (BaTiO3) , 1992 .

[49]  T. J. Yosenick Synthesis and Colloidal Properties of Anisotropic Hydrothermal Barium Titanate , 2005 .

[50]  C. Pissis,et al.  LI. Experiments on the asbes of some kinds of wood , 1801 .

[51]  J. Svoboda,et al.  The Origins of Ceramic Technology at Dolni Věstonice, Czechoslovakia , 1989, Science.

[52]  G. Carpenter The crystal structure of sodium nitrite , 1952 .

[53]  Yu‐Wen Chen,et al.  Hydrothermal synthesis of barium titanate , 2003 .

[54]  Jing Guo,et al.  Cold Sintering: A Paradigm Shift for Processing and Integration of Ceramics. , 2016, Angewandte Chemie.

[55]  John L. Anderson,et al.  Colloid Transport by Interfacial Forces , 1989 .

[56]  Jari Juuti,et al.  Dielectric Properties of Lithium Molybdate Ceramic Fabricated at Room Temperature , 2014 .

[57]  C. Randall,et al.  Utilizing the Cold Sintering Process for Flexible–Printable Electroceramic Device Fabrication , 2016 .

[58]  Sea-Fue Wang,et al.  Densification and properties of fluxed sintered NiCuZn ferrites , 2000 .

[59]  P. K. Weyl Pressure solution and the force of crystallization: a phenomenological theory , 1959 .

[60]  S. Nomura,et al.  Domain Structure of NaNO2 , 1961 .

[61]  A. V. Levich,et al.  Surface-Tension-Driven Phenomena , 1969 .

[62]  Sigetosi Tanisaki,et al.  X-ray Study on the Ferroelectric Phase Transition of NaNO2 , 1963 .

[63]  M. Shumsky,et al.  Hydrothermal precipitation and characterization of nanocrystalline BaTiO3 particles , 2001 .

[64]  Superconducting properties of MgB2 bulk materials prepared by high-pressure sintering , 2001, cond-mat/0102167.

[65]  C. Aymonier,et al.  Supercritical fluid technology: A reliable process for high quality BaTiO3 based nanomaterials , 2014 .

[66]  Zhi-guo Liu,et al.  BaTiO3 nanocrystals: Hydrothermal synthesis and structural characterization , 2005 .

[67]  Zhang Xiaowen,et al.  Low‐Temperature Sintering of Lead‐Based Piezoelectric Ceramics , 1989 .

[68]  C. Randall,et al.  Mixed conduction and chemical diffusion in a Pb(Zr0.53, Ti0.47)O3 buried capacitor structure , 2010 .

[69]  J. W. Eberhard,et al.  Dielectric study of the ferroelectric phase transition of KH2PO4 , 1975 .

[70]  R. Chaim,et al.  Densification of nanocrystalline Y2O3 ceramic powder by spark plasma sintering , 2009 .

[71]  A. Rabenau The Role of Hydrothermal Synthesis in Preparative Chemistry , 1985 .

[72]  Y. Badr,et al.  Ferroelectric and dielectric properties of thin NaNO2 layers , 1986 .

[73]  R. Raj,et al.  Solution-precipitation creep in glass ceramics , 1981 .

[74]  Frey Mh,et al.  GRAIN-SIZE EFFECT ON STRUCTURE AND PHASE TRANSFORMATIONS FOR BARIUM TITANATE , 1996 .

[75]  Liyu Li,et al.  Two‐Step Sintering of Ceramics with Constant Grain‐Size, II: BaTiO3 and Ni–Cu–Zn Ferrite , 2006 .

[76]  K. Arai,et al.  Continuous production of BaTiO3 nanoparticles by hydrothermal synthesis , 2005 .

[77]  C. Capiglia,et al.  Preparation of Fine-grained BaTiO_3 Ceramics by Spark Plasma Sintering , 2002 .

[78]  S. Nomura,et al.  Ferroelectricity in NaNO 2 , 1958 .

[79]  M. Cologna,et al.  Flash Sintering of Nanograin Zirconia in <5 s at 850°C , 2010 .

[80]  Zhe Zhao,et al.  Spark Plasma Sintering of Nano-Crystalline Ceramics , 2004 .

[81]  L. Scriven,et al.  Interfacial turbulence: Hydrodynamic instability and the marangoni effect , 1959 .

[82]  C. Elissalde,et al.  Tailoring Dielectric Properties of Multilayer Composites Using Spark Plasma Sintering , 2007 .

[83]  J. A. Quinn,et al.  Diffusion-induced banding of colloid particles via diffusiophoresis: 2. Non-electrolytes , 1989 .

[84]  Y. Han,et al.  Sintering of nanocrystalline BaTiO3 , 2004 .

[85]  E. Gutmanas Materials with fine microstructures by advanced powder metallurgy , 1990 .

[86]  Zhe Zhao,et al.  Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO 3 ceramics , 2004 .

[87]  G. Arlt,et al.  Dielectric properties of fine‐grained barium titanate ceramics , 1985 .

[88]  M. Ashby,et al.  On creep enhanced by a liquid phase , 1983 .

[89]  V. Santen The Ostwald step rule , 1984 .

[90]  I. Chen,et al.  Sintering dense nanocrystalline ceramics without final-stage grain growth , 2000, Nature.

[91]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[92]  Zhe Zhao,et al.  Ferroelectric properties of dense nanocrystalline BaTiO3 ceramics , 2004 .

[93]  J. A. Quinn,et al.  Diffusion-induced banding of colloid particles via diffusiophoresis , 1989 .

[94]  D. Thompson Materials science: Cooking up tougher ceramics , 2002, Nature.

[95]  Kunio Takahashi,et al.  Molecular rotation and the phase transition in NaNO2 , 1997 .

[96]  C. Courtois,et al.  Evidence of a dissolution–precipitation mechanism in hydrothermal synthesis of barium titanate powders , 1999 .

[97]  R. Craster,et al.  Dynamics and stability of thin liquid films , 2009 .

[98]  Jing Guo,et al.  Cold Sintering Process of Composites: Bridging the Processing Temperature Gap of Ceramic and Polymer Materials , 2016 .

[99]  Longtu Li,et al.  Densification of uniformly small-grained BaTiO3 using spark-plasma-sintering , 2003 .

[100]  J. Koplik,et al.  Diffusiophoretic self-propulsion of colloids driven by a surface reaction: The sub-micron particle regime for exponential and van der Waals interactions , 2013 .

[101]  M. Tabuchi,et al.  Preparation of Dense BaTiO3 Ceramics with Submicrometer Grains by Spark Plasma Sintering , 1999 .

[102]  T. Lebey,et al.  Electrical characteristics of BaTiO3 ceramics from hydrothermal prepared powders , 2005 .

[103]  K. Gesi,et al.  Electrical Properties of NaNO2 Single Crystal in the Vicinity of the Ferroelectric Curie Temperature , 1967 .

[104]  C. Randall,et al.  Base Metal Co-Fired Multilayer Piezoelectrics , 2016 .