Fast Fourier Transforms for Spherical Gauss-Laguerre Basis Functions

Spherical Gauss-Laguerre (SGL) basis functions, i.e., normalized functions of the type L n−l−1(l+1∕2)​(r2)r l Y lm (ϑ, φ), \(\vert m\vert \leq l < n \in \mathbb{N}\), L n−l−1(l+1∕2)​ being a generalized Laguerre polynomial, Y lm a spherical harmonic, constitute an orthonormal basis of the space L2​ on \(\mathbb{R}^{3\!}\) with Gaussian weight exp(−r2). These basis functions are used extensively, e.g., in biomolecular dynamic simulations. However, to the present, there is no reliable algorithm available to compute the Fourier coefficients of a function with respect to the SGL basis functions in a fast way. This paper presents such generalized FFTs. We start out from an SGL sampling theorem that permits an exact computation of the SGL Fourier expansion of bandlimited functions. By a separation-of-variables approach and the employment of a fast spherical Fourier transform, we then unveil a general class of fast SGL Fourier transforms. All of these algorithms have an asymptotic complexity of \(\mathscr{O}(B^{4})\), B being the respective bandlimit, while the number of sample points on \(\mathbb{R}^{3\!}\) scales with B3​. This clearly improves the naive bound of \(\mathscr{O}(B^{7})\). At the same time, our approach results in fast inverse transforms with the same asymptotic complexity as the forward transforms. We demonstrate the practical suitability of our algorithms in a numerical experiment. Notably, this is one of the first performances of generalized FFTs on a non-compact domain. We conclude with a discussion, including the layout of a true \(\mathscr{O}(B^{3}\log ^{2\!}B)\) fast SGL Fourier transform and inverse, and an outlook on future developments.

[1]  D. Ritchie,et al.  Protein docking using spherical polar Fourier correlations , 2000, Proteins.

[2]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[3]  G. D. Byrne,et al.  Gaussian Quadratures for the Integrals , 2010 .

[4]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[5]  A. V. Prymak,et al.  Convex polynomial approximation in Rd with Freud weights , 2015, J. Approx. Theory.

[6]  D. Rockmore,et al.  FFTs on the Rotation Group , 2008 .

[7]  G. Steidl,et al.  A polynomial approach to fast algorithms for discrete Fourier-cosine and Fourier-sine transforms , 1991 .

[8]  Philip Crotwell Constructive Approximation on the Sphere , 2000 .

[9]  Stefan Kunis,et al.  Fast spherical Fourier algorithms , 2003 .

[10]  C. W. Clenshaw A note on the summation of Chebyshev series , 1955 .

[11]  Yuan Xu,et al.  Orthogonal Polynomials of Several Variables: Subject index , 2001 .

[12]  David Ritchie,et al.  High-order analytic translation matrix elements for real-space six-dimensional polar Fourier correlations , 2005 .

[13]  Yuan Xu,et al.  Orthogonal Polynomials of Several Variables , 2014, 1701.02709.

[14]  Yuan Xu,et al.  Approximation Theory and Harmonic Analysis on Spheres and Balls , 2013 .

[15]  James D. Louck,et al.  Angular Momentum in Quantum Physics: Theory and Application , 1984 .

[16]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[17]  Dennis M. Healy,et al.  Fast Discrete Polynomial Transforms with Applications to Data Analysis for Distance Transitive Graphs , 1997, SIAM J. Comput..

[18]  G. D. Byrne,et al.  Gaussian Quadratures for the Integrals ∞ 0 exp(-x 2 )f(x)dx and b 0 exp(-x 2 )f(x)dx , 1969 .

[19]  Daniel Potts,et al.  A fast algorithm for nonequispaced Fourier transforms on the rotation group , 2009, Numerical Algorithms.

[20]  G. Chirikjian,et al.  Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups , 2000 .

[21]  D. Healy,et al.  Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .

[22]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[23]  Dan E. Dudgeon,et al.  Multidimensional Digital Signal Processing , 1983 .

[24]  W. Gautschi Numerical analysis: an introduction , 1997 .

[25]  Jason D. McEwen,et al.  Ieee Transactions on Signal Processing 1 Exact Wavelets on the Ball , 2022 .

[26]  Yves Wiaux,et al.  A Novel Sampling Theorem on the Sphere , 2011, IEEE Transactions on Signal Processing.

[27]  Yves Wiaux,et al.  A Novel Sampling Theorem on the Rotation Group , 2015, IEEE Signal Processing Letters.

[28]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[29]  Sean S. B. Moore,et al.  FFTs for the 2-Sphere-Improvements and Variations , 1996 .

[30]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .