Determining the minimum clamping force by cutting force simulation in aerospace fuselage pocket machining

In large fuselage milling operation the panel may deflect and vibrate due to milling thrust force. A clamp is needed on the opposite side of the panel to limit such effects. The support must be able to withstand the thrust force generated by the milling process. In this paper, a specific model for torus cutter milling force and a general milling force model have been simulated to predict the cutting forces. In order to get higher cutting efficiency, the torus cutter needs to adopt different tilt angle relative to the workpiece which changes the thrust force. An equation has been developed to predict the resulting thrust force on the skin panel at different tilting angle. Simulated thrust force results have been validated against dynamometer readings acquired during milling operation.