Global Existence and Uniqueness of Weak Solutions of Three-Dimensional Euler Equations with Helical Symmetry in the Absence of Vorticity Stretching

We prove uniqueness and existence of the weak solutions of Euler equations with helical symmetry, with initial vorticity in $L^{\infty}$ under “no vorticity stretching” geometric constraint. Our article follows the argument of the seminal work of Yudovich. We adjust the argument to resolve the difficulties which are specific to the helical symmetry.

[1]  M. R. Ukhovskii,et al.  Axially symmetric flows of ideal and viscous fluids filling the whole space , 1968 .

[2]  Alexandre Dutrifoy Existence globale en temps de solutions hélicoïdales des équations d'Euler , 1999 .

[3]  V. I. Yudovich,et al.  Uniqueness Theorem for the Basic Nonstationary Problem in the Dynamics of an Ideal Incompressible Fluid , 1995 .

[4]  M. Vishik,et al.  Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type , 1999 .

[5]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[6]  Edriss S. Titi,et al.  Euler equations for incompressible ideal fluids , 2007 .

[7]  J. Delort Existence de nappes de tourbillon en dimension deux , 1991 .

[8]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[9]  V. I. Yudovich,et al.  Non-stationary flow of an ideal incompressible liquid , 1963 .

[10]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[11]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[12]  A. Majda,et al.  Oscillations and concentrations in weak solutions of the incompressible fluid equations , 1987 .

[13]  Dongho Chae,et al.  Generic Solvability of the Axisymmetric 3-D Euler Equations and the 2-D Boussinesq Equations , 1999 .

[14]  E. Titi,et al.  Invariant helical subspaces for the Navier-Stokes equations , 1990 .

[15]  Thomas Y. Hou,et al.  Dynamic stability of the three‐dimensional axisymmetric Navier‐Stokes equations with swirl , 2008 .

[16]  Hantaek Bae Navier-Stokes equations , 1992 .

[17]  C. Bardos,et al.  Existence et unicité de la solution de l'équation d'Euler en dimension deux , 1972 .

[18]  A. B. Ferrari On the blow-up of solutions of the 3-D Euler equations in a bounded domain , 1993 .

[19]  Giovanni P. Galdi,et al.  An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .

[20]  Peter Constantin,et al.  On the Euler equations of incompressible fluids , 2007 .