Simultaneous estimation and modeling of nonlinear, non-Gaussian state-space systems

Abstract This paper presents a framework for simultaneous estimation and modeling of nonlinear, non-Gaussian state-space systems. In the proposed approach, uncertainty in motion model parameters is incorporated to avoid overconfidence in state prediction and better account for modeling inaccuracies. The additional original contribution of a model correction stage improves nonlinear model parameter estimates in order to enhance the accuracy of state estimation. The presented nonlinear/non-Gaussian Simultaneous Estimation And Modeling (SEAM) approach was compared with contemporary estimation techniques using a Monte-Carlo simulation study. This study showed that the proposed method successfully reduces estimation error relative to existing approaches even when substantial model parameter uncertainty and multi-modal sensor noise are present. The framework has potential use in a wide range of applications where state-space estimation is employed, including robotics, signal processing, and controls.

[1]  Devendra Potnuru,et al.  Derivative-free square-root cubature Kalman filter for non-linear brushless DC motors , 2016 .

[2]  Edoardo Patelli,et al.  Sensitivity or Bayesian model updating: a comparison of techniques using the DLR AIRMOD test data , 2017 .

[3]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[4]  Ilias Bilionis,et al.  Global sensitivity analysis for the design of nonlinear identification experiments , 2019, Nonlinear Dynamics.

[5]  Brett Ninness,et al.  Robust maximum-likelihood estimation of multivariable dynamic systems , 2005, Autom..

[6]  Andrew W. Smyth,et al.  A marginalized unscented Kalman filter for efficient parameter estimation with applications to finite element models , 2018, Computer Methods in Applied Mechanics and Engineering.

[7]  Chiuyuan Chen,et al.  Sensor Deployment under Probabilistic Sensing Model , 2018, HPCCT.

[8]  Tomonari Furukawa,et al.  Bayesian non-field-of-view target estimation incorporating an acoustic sensor , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[9]  Alexander Katriniok,et al.  Adaptive EKF-Based Vehicle State Estimation With Online Assessment of Local Observability , 2016, IEEE Transactions on Control Systems Technology.

[10]  A. Bos Parameter Estimation for Scientists and Engineers , 2007 .

[11]  John F. Vetelino,et al.  Introduction to Sensors , 2010 .

[12]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[13]  Vladimir Stojanovic,et al.  Robust Kalman filtering for nonlinear multivariable stochastic systems in the presence of non‐Gaussian noise , 2016 .

[14]  Thomas Moore,et al.  A Generalized Extended Kalman Filter Implementation for the Robot Operating System , 2014, IAS.

[15]  D. L. Alspach,et al.  Gaussian Sum Approximations in Nonlinear Filtering and Control , 1974, Inf. Sci..

[16]  Ramin S. Esfandiari,et al.  Modeling and Analysis of Dynamic Systems , 2010 .

[17]  Emrah Zerdali,et al.  Adaptive Extended Kalman Filter for Speed-Sensorless Control of Induction Motors , 2019, IEEE Transactions on Energy Conversion.

[18]  Kang-Zhi Liu,et al.  Robust Tracking and Disturbance Rejection for Linear Uncertain System With Unknown State Delay and Disturbance , 2018, IEEE/ASME Transactions on Mechatronics.

[19]  Jinde Cao,et al.  Composite Learning Adaptive Dynamic Surface Control of Fractional-Order Nonlinear Systems , 2020, IEEE Transactions on Cybernetics.

[20]  Ka-Veng Yuen,et al.  Real‐Time System Identification: An Algorithm for Simultaneous Model Class Selection and Parametric Identification , 2015, Comput. Aided Civ. Infrastructure Eng..

[21]  Garry A. Einicke,et al.  Iterative filtering and smoothing of measurements possessing poisson noise , 2015, IEEE Transactions on Aerospace and Electronic Systems.

[22]  Vladimir Stojanovic,et al.  Joint state and parameter robust estimation of stochastic nonlinear systems , 2016 .

[23]  Carolyn Kalender,et al.  Sparse Grid-Based Nonlinear Filtering , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[24]  N. Nichols,et al.  A joint state and parameter estimation scheme for nonlinear dynamical systems , 2014 .

[25]  Suman Chakravorty,et al.  Particle Gaussian Mixture Filters: Application and Performance Evaluation , 2019, 2019 22th International Conference on Information Fusion (FUSION).

[26]  Peter Jan van Leeuwen,et al.  Sequential Monte Carlo with kernel embedded mappings: The mapping particle filter , 2019, J. Comput. Phys..

[27]  Xiangpeng Xie,et al.  Observer-Based State Estimation of Discrete-Time Fuzzy Systems Based on a Joint Switching Mechanism for Adjacent Instants , 2020, IEEE Transactions on Cybernetics.

[28]  Haoyong Yu,et al.  Composite adaptive dynamic surface control using online recorded data , 2016 .

[29]  Azadeh Vosoughi,et al.  On Distributed Linear Estimation With Observation Model Uncertainties , 2017, IEEE Transactions on Signal Processing.

[30]  Yang Yang,et al.  Schmidt-Kalman Filter with Polynomial Chaos Expansion for State Estimation , 2019, 2019 22th International Conference on Information Fusion (FUSION).

[31]  Tomonari Furukawa,et al.  Probabilistic observation model correction using non-Gaussian belief fusion , 2021, Inf. Fusion.

[32]  Henk A. P. Blom,et al.  Aircraft Mass and Thrust Estimation Using Recursive Bayesian Method , 2018 .

[33]  J. Josiah Steckenrider,et al.  A Probabilistic Model-adaptive Approach for Tracking of Motion with Heightened Uncertainty , 2020 .

[34]  Ka-Veng Yuen,et al.  Self‐calibrating Bayesian real‐time system identification , 2019, Comput. Aided Civ. Infrastructure Eng..

[35]  Garry A. Einicke,et al.  Iterative Smoother-Based Variance Estimation , 2012, IEEE Signal Processing Letters.

[36]  Tomonari Furukawa,et al.  Multi-dimensional belief fusion of multi-Gaussian structures , 2020, Inf. Fusion.

[37]  Christopher K. Wikle,et al.  A Bayesian Adaptive Ensemble Kalman Filter for Sequential State and Parameter Estimation , 2016, 1611.03835.

[38]  Kwangseok Oh,et al.  Inertial Parameter Estimation of an Excavator with Adaptive Updating Rule Using Performance Analysis of Kalman Filter , 2018 .

[39]  Suman Chakravorty,et al.  Particle Gaussian Mixture Filters-II , 2018, 2018 21st International Conference on Information Fusion (FUSION).