Rogue waves and lump solitons for a -dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics

Abstract Under investigation is a -dimensional B-type Kadomtsev–Petviashvili equation, which has applications in the propagation of non-linear waves in fluid dynamics. Through the Hirota method and the extended homoclinic test technique, we obtain the breather-type kink soliton solutions and breather rational soliton solutions. Rogue wave solutions are derived, which come from the derivation of breather rational solitons with respect to x. Amplitudes of the breather-type kink solitons and rogue waves decrease with a non-zero parameter in the equation, , increasing when . In addition, dark rogue waves are derived when . Furthermore, with the aid of the Hirota method and symbolic computation, two types of the lump solitons are obtained with the different choices of the parameters. We graphically study the lump solitons related to the parameter , and amplitude of the lump soliton is negatively correlated with when .

[1]  Y. Kivshar,et al.  Self-focusing of plane dark solitons in nonlinear defocusing media. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[2]  Ruan,et al.  Dromion interactions of (2+1)-dimensional nonlinear evolution equations , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  J. Weiss THE PAINLEVE PROPERTY FOR PARTIAL DIFFERENTIAL EQUATIONS. II. BACKLUND TRANSFORMATION, LAX PAIRS, AND THE SCHWARZIAN DERIVATIVE , 1983 .

[4]  Yi-Tian Gao,et al.  Bilinear forms and solitons for a generalized sixth-order nonlinear Schrödinger equation in an optical fiber , 2017 .

[6]  Eric Falcon,et al.  Observation of depression solitary surface waves on a thin fluid layer. , 2002, Physical review letters.

[7]  R. Miura The Korteweg–deVries Equation: A Survey of Results , 1976 .

[8]  Javier Villarroel,et al.  Dynamics of Lump Solutions in a 2 + 1 NLS Equation , 2009 .

[9]  Yi-Tian Gao,et al.  Lax pair, rogue-wave and soliton solutions for a variable-coefficient generalized nonlinear Schrödinger equation in an optical fiber, fluid or plasma , 2016 .

[10]  Alfred R. Osborne,et al.  Nonlinear Ocean Waves and the Inverse Scattering Transform , 2010 .

[11]  Hui-Qin Hao,et al.  Multisoliton Solutions and Breathers for the Coupled Nonlinear Schrödinger Equations via the Hirota Method , 2016 .

[12]  Bo Tian,et al.  Solitons and rouge waves for a generalized (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in fluid mechanics , 2016, Comput. Math. Appl..

[13]  Bo Tian,et al.  Bäcklund transformations and soliton solutions for a $$(3+1)$$(3+1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics , 2015 .

[14]  Yi-Tian Gao,et al.  Bilinear Bäcklund transformation, soliton and periodic wave solutions for a $$\varvec{(3 + 1)}$$(3+1)-dimensional variable-coefficient generalized shallow water wave equation , 2017 .

[15]  Hong-Cai Ma,et al.  Lump Solution of (2+1)-Dimensional Boussinesq Equation* , 2016 .

[16]  Yi-Tian Gao,et al.  Dark solitons for a (2+1)-dimensional coupled nonlinear Schrödinger system with time-dependent coefficients in an optical fiber , 2017 .

[17]  Xin-Yi Gao Bäcklund transformation and shock-wave-type solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid mechanics , 2015 .

[18]  Zhengde Dai,et al.  Dynamics of kinky wave for ($$3+1$$3+1)-dimensional potential Yu–Toda–Sasa–Fukuyama equation , 2016 .

[19]  Yi-Tian Gao,et al.  Solitons for a generalized sixth-order variable-coefficient nonlinear Schrödinger equation for the attosecond pulses in an optical fiber , 2017, Commun. Nonlinear Sci. Numer. Simul..

[20]  B. Kadomtsev,et al.  On the Stability of Solitary Waves in Weakly Dispersing Media , 1970 .

[21]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[22]  Z. Dai,et al.  Kink degeneracy and rogue potential solution for the (3+1)-dimensional B-type Kadomtsev–Petviashvili equation , 2016 .

[23]  Yi-Tian Gao,et al.  Solitons, breathers and rogue waves for a sixth-order variable-coefficient nonlinear Schrödinger equation in an ocean or optical fiber , 2017 .

[24]  Yi Qin,et al.  Bell-polynomial approach applied to the seventh-order Sawada-Kotera-Ito equation , 2014, Appl. Math. Comput..

[25]  Abdul-Majid Wazwaz,et al.  Two forms of (3 + 1)-dimensional B-type Kadomtsev–Petviashvili equation: multiple soliton solutions , 2012 .

[26]  Y. Nakamura,et al.  Observation of Peregrine solitons in a multicomponent plasma with negative ions. , 2011, Physical review letters.

[27]  Hui-Qin Hao,et al.  Multi-soliton solutions and Breathers for the generalized coupled nonlinear Hirota equations via the Hirota method , 2017 .

[28]  Mark J. Ablowitz,et al.  On the evolution of packets of water waves , 1979, Journal of Fluid Mechanics.

[29]  Y. Simsek,et al.  On the generalized Apostol-type Frobenius-Euler polynomials , 2013 .

[30]  Wenxiu Ma,et al.  Lump solutions to the Kadomtsev–Petviashvili equation , 2015 .

[31]  K. Murawski,et al.  Solitary waves in plasmas and in the atmosphere , 1989 .

[32]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[33]  C. M. Khalique,et al.  Exact solutions and conservation laws of a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation , 2013, Advances in Difference Equations.

[34]  Robert M. Miura,et al.  Korteweg-de Vries Equation and Generalizations. I. A Remarkable Explicit Nonlinear Transformation , 1968 .

[35]  L. Debnath Solitons and the Inverse Scattering Transform , 2012 .

[36]  Lena Vogler,et al.  The Direct Method In Soliton Theory , 2016 .

[37]  Xin-Yi Gao,et al.  Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation , 2017, Appl. Math. Lett..

[38]  E. Diez,et al.  Lump solitons in a higher-order nonlinear equation in 2+1 dimensions. , 2016, Physical review. E.