Adaptive tetrahedral meshes for brittle fracture simulation

We present a method for the adaptive simulation of brittle fracture of solid objects based on a novel reversible tetrahedral mesh refinement scheme. The refinement scheme preserves the quality of the input mesh to a large extent, it is solely based on topological operations, and does not alter the boundary, i.e. any geometric feature. Our fracture algorithm successively performs a stress analysis and increases the resolution of the input mesh in regions of high tensile stress. This results in an accurate location of crack origins without the need of a general high resolution mesh which would cause high computational costs throughout the whole simulation. A crack is initiated when the maximum tensile stress exceeds the material strength. The introduced algorithm then proceeds by iteratively recomputing the changed stress state and creating further cracks. Our approach can generate multiple cracks from a single impact, but effectively avoids shattering artifacts. Once the tensile stress decreases, the mesh refinement is reversed to increase the performance of the simulation. We demonstrate that our adaptive method is robust, scalable and computes highly realistic fracture results.

[1]  James F. O'Brien,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2006) Generating Surface Crack Patterns , 2022 .

[2]  Ronald Fedkiw,et al.  Fracturing Rigid Materials , 2007, IEEE Transactions on Visualization and Computer Graphics.

[3]  Jeffrey C. Trinkle,et al.  Interactive Simulation of Rigid Body Dynamics in Computer Graphics , 2014, Eurographics.

[4]  Markus H. Gross,et al.  Physically-based simulation of objects represented by surface meshes , 2004, Proceedings Computer Graphics International, 2004..

[5]  Demetri Terzopoulos,et al.  Modeling inelastic deformation: viscolelasticity, plasticity, fracture , 1988, SIGGRAPH.

[6]  Bernd Hamann,et al.  Adaptive and Feature‐Preserving Subdivision for High‐Quality Tetrahedral Meshes , 2010, Comput. Graph. Forum.

[7]  Ronald Fedkiw,et al.  Arbitrary cutting of deformable tetrahedralized objects , 2007, SCA '07.

[8]  Jagnow Robert Carl,et al.  Real-time simulation of deformation and fracture of stiff materials , 2001 .

[9]  Jan Bender,et al.  Adaptive cloth simulation using corotational finite elements , 2013, Comput. Graph..

[10]  James F. O'Brien,et al.  Dynamic local remeshing for elastoplastic simulation , 2010, SIGGRAPH 2010.

[11]  James F. O'Brien,et al.  Real-time deformation and fracture in a game environment , 2009, SCA '09.

[12]  James F. O'Brien,et al.  Generating surface crack patterns , 2006 .

[13]  J. Barbera,et al.  Contact mechanics , 1999 .

[14]  James F. O'Brien,et al.  Dynamic local remeshing for elastoplastic simulation , 2010, ACM Trans. Graph..

[15]  Andrew Witkin,et al.  Fast and Controllable Simulation of the Shattering of Brittle Objects , 2001 .

[16]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[17]  Robert Bacon,et al.  Animation of fracture by physical modeling , 1991, The Visual Computer.

[18]  E. Gdoutos,et al.  Fracture Mechanics , 2020, Encyclopedic Dictionary of Archaeology.

[19]  Greg Turk,et al.  Fast viscoelastic behavior with thin features , 2008, ACM Trans. Graph..

[20]  Miguel A. Otaduy,et al.  Fracture animation based on high-dimensional Voronoi diagrams , 2014, I3D.

[21]  Maud Marchal,et al.  Real-Time Simulation of Brittle Fracture Using Modal Analysis , 2013, IEEE Transactions on Visualization and Computer Graphics.

[22]  Jonathan Richard Shewchuk,et al.  Isosurface stuffing: fast tetrahedral meshes with good dihedral angles , 2007, ACM Trans. Graph..

[23]  Chenfanfu Jiang,et al.  A level set method for ductile fracture , 2013, SCA '13.

[24]  Ronald Fedkiw,et al.  A virtual node algorithm for changing mesh topology during simulation , 2004, ACM Trans. Graph..

[25]  G. Turk,et al.  Fast viscoelastic behavior with thin features , 2008, SIGGRAPH 2008.

[26]  J. Shewchuk,et al.  Isosurface stuffing: fast tetrahedral meshes with good dihedral angles , 2007, SIGGRAPH 2007.

[27]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.

[28]  R. Bank,et al.  Some Refinement Algorithms And Data Structures For Regular Local Mesh Refinement , 1983 .

[29]  Ronald Fedkiw,et al.  A Crystalline, Red Green Strategy for Meshing Highly Deformable Objects with Tetrahedra , 2003, IMR.

[30]  Huamin Wang,et al.  Adaptive fracture simulation of multi-layered thin plates , 2013, ACM Trans. Graph..

[31]  Jessica K. Hodgins,et al.  Graphical modeling and animation of brittle fracture , 1999, SIGGRAPH.

[32]  Ronald Fedkiw,et al.  Energy stability and fracture for frame rate rigid body simulations , 2009, SCA '09.

[33]  Andrew P. Witkin,et al.  Fast and Controllable Simulation of the Shattering of Brittle Objects , 2001, Comput. Graph. Forum.

[34]  Leonidas J. Guibas,et al.  Meshless animation of fracturing solids , 2005, ACM Trans. Graph..

[35]  Nuttapong Chentanez,et al.  Real time dynamic fracture with volumetric approximate convex decompositions , 2013, ACM Trans. Graph..

[36]  Jessica K. Hodgins,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH.

[37]  Matthias Müller,et al.  Physically-based simulation of objects represented by surface meshes , 2004 .

[38]  Rüdiger Westermann,et al.  A Hexahedral Multigrid Approach for Simulating Cuts in Deformable Objects , 2011, IEEE Transactions on Visualization and Computer Graphics.

[39]  Ronald Fedkiw,et al.  A virtual node algorithm for changing mesh topology during simulation , 2004, SIGGRAPH 2004.