A Graph-based model for context-aware recommendation using implicit feedback data

Recommender systems have been successfully dealing with the problem of information overload. However, most recommendation methods suit to the scenarios where explicit feedback, e.g. ratings, are available, but might not be suitable for the most common scenarios with only implicit feedback. In addition, most existing methods only focus on user and item dimensions and neglect any additional contextual information, such as time and location. In this paper, we propose a graph-based generic recommendation framework, which constructs a Multi-Layer Context Graph (MLCG) from implicit feedback data, and then performs ranking algorithms in MLCG for context-aware recommendation. Specifically, MLCG incorporates a variety of contextual information into a recommendation process and models the interactions between users and items. Moreover, based on MLCG, two novel ranking methods are developed: Context-aware Personalized Random Walk (CPRW) captures user preferences and current situations, and Semantic Path-based Random Walk (SPRW) incorporates semantics of paths in MLCG into random walk model for recommendation. The experiments on two real-world datasets demonstrate the effectiveness of our approach.

[1]  Joseph A. Konstan,et al.  Content-Independent Task-Focused Recommendation , 2001, IEEE Internet Comput..

[2]  Pang-Ning Tan,et al.  Recommendation via Query Centered Random Walk on K-Partite Graph , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[3]  Lars Schmidt-Thieme,et al.  BPR: Bayesian Personalized Ranking from Implicit Feedback , 2009, UAI.

[4]  Yanchun Zhang,et al.  Personalized Recommendation on Multi-Layer Context Graph , 2013, WISE.

[5]  Li Chen,et al.  Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence GBPR: Group Preference Based Bayesian Personalized Ranking for One-Class Collaborative Filtering , 2022 .

[6]  Jimeng Sun,et al.  Temporal recommendation on graphs via long- and short-term preference fusion , 2010, KDD.

[7]  Gediminas Adomavicius,et al.  Incorporating contextual information in recommender systems using a multidimensional approach , 2005, TOIS.

[8]  Martha Larson,et al.  TFMAP: optimizing MAP for top-n context-aware recommendation , 2012, SIGIR '12.

[9]  Toine Bogers,et al.  Movie Recommendation using Random Walks over the Contextual Graph , 2010 .

[10]  Xi Chen,et al.  Temporal Collaborative Filtering with Bayesian Probabilistic Tensor Factorization , 2010, SDM.

[11]  Nuria Oliver,et al.  Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering , 2010, RecSys '10.

[12]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[13]  Karl Aberer,et al.  SoCo: a social network aided context-aware recommender system , 2013, WWW.

[14]  Sangkeun Lee,et al.  Random walk based entity ranking on graph for multidimensional recommendation , 2011, RecSys '11.

[15]  Joemon M. Jose,et al.  Personalizing Web Search with Folksonomy-Based User and Document Profiles , 2010, ECIR.

[16]  George Karypis,et al.  Evaluation of Item-Based Top-N Recommendation Algorithms , 2001, CIKM '01.

[17]  Deepak Agarwal,et al.  Regression-based latent factor models , 2009, KDD.

[18]  Lars Schmidt-Thieme,et al.  Fast context-aware recommendations with factorization machines , 2011, SIGIR.

[19]  Shuchuan Lo,et al.  WMR--A Graph-Based Algorithm for Friend Recommendation , 2006, 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06).

[20]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[21]  Marco Gori,et al.  Recommender Systems : A Random-Walk Based Approach , 2006 .

[22]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[23]  Ni Lao,et al.  Fast query execution for retrieval models based on path-constrained random walks , 2010, KDD.

[24]  Yanchun Zhang,et al.  Shilling attack detection utilizing semi-supervised learning method for collaborative recommender system , 2013, World Wide Web.

[25]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[26]  Yanchun Zhang,et al.  SoRank: incorporating social information into learning to rank models for recommendation , 2014, WWW.

[27]  Atish Das Sarma,et al.  Fast Distributed PageRank Computation , 2013, ICDCN.

[28]  Chong Wang,et al.  Collaborative topic modeling for recommending scientific articles , 2011, KDD.

[29]  François Fouss,et al.  Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation , 2007, IEEE Transactions on Knowledge and Data Engineering.

[30]  Jagadeesh Gorla,et al.  Probabilistic group recommendation via information matching , 2013, WWW.

[31]  Philip S. Yu,et al.  PathSim , 2011, Proc. VLDB Endow..

[32]  Marco Gori,et al.  ItemRank: A Random-Walk Based Scoring Algorithm for Recommender Engines , 2007, IJCAI.

[33]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[34]  Ashish Goel,et al.  Fast Incremental and Personalized PageRank , 2010, Proc. VLDB Endow..

[35]  Hsinchun Chen,et al.  A graph-based recommender system for digital library , 2002, JCDL '02.

[36]  David R. Karger,et al.  Less is More Probabilistic Models for Retrieving Fewer Relevant Documents , 2006 .