Nonlinear frequency response analysis of structural vibrations

[1]  Alessandro Reali,et al.  Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems , 2014 .

[2]  Bernd Simeon,et al.  Isogeometric analysis of nonlinear Euler–Bernoulli beam vibrations , 2013 .

[3]  U. Becker Efficient time integration and nonlinear model reduction for incompressible hyperelastic materials , 2013 .

[4]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[5]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[6]  R. Kolman ISOGEOMETRIC FREE VIBRATION OF AN ELASTIC BLOCK , 2012 .

[7]  Fu Xiaojin,et al.  Isogeometric Analysis Toward Integration of CAD and CAE , 2011 .

[8]  Kjell Magne Mathisen,et al.  Isogeometric analysis of finite deformation nearly incompressible solids , 2011 .

[9]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[10]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[11]  M. Anitescu,et al.  Polynomial Regression Approaches Using Derivative Information for Uncertainty Quantification , 2010 .

[12]  F. Auricchio,et al.  The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations , 2010 .

[13]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[14]  Marco Amabili,et al.  Reduced-order models for large-amplitude vibrations of shells including in-plane inertia , 2008 .

[15]  Sabrina Herkt,et al.  Model Reduction of Nonlinear Problems in Structural Mechanics: Towards a Finite Element Tyre Model for Multibody Simulation , 2008 .

[16]  Doug L. James,et al.  Real-time reduced large-deformation models and distributed contact for computer graphics and haptics , 2007 .

[17]  Marco Amabili,et al.  Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures , 2006 .

[18]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[19]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[20]  Zu-Qing Qu,et al.  Model Order Reduction Techniques with Applications in Finite Element Analysis , 2004 .

[21]  Pedro Ribeiro,et al.  Non-linear forced vibrations of thin/thick beams and plates by the finite element and shooting methods , 2004 .

[22]  Christophe Pierre,et al.  Finite-Element-Based Nonlinear Modal Reduction of a Rotating Beam with Large-Amplitude Motion , 2003 .

[23]  Pedro Ribeiro,et al.  HIERARCHICAL FINITE ELEMENT ANALYSES OF GEOMETRICALLY NON-LINEAR VIBRATION OF BEAMS AND PLANE FRAMES , 2001 .

[24]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[25]  Maurice Petyt,et al.  NON-LINEAR VIBRATION OF BEAMS WITH INTERNAL RESONANCE BY THE HIERARCHICAL FINITE-ELEMENT METHOD , 1999 .

[26]  Roman Lewandowski,et al.  Computational formulation for periodic vibration of geometrically nonlinear structures—part 1: Theoretical background , 1997 .

[27]  Pma Paul Slaats,et al.  MODEL REDUCTION TOOLS FOR NONLINEAR STRUCTURAL DYNAMICS , 1995 .

[28]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[29]  Qinghua Zheng,et al.  Parallel harmonic balance , 1993, VLSI.

[30]  J. Remke,et al.  Eine modale Reduktionsmethode zur geometrisch nichtlinearen statischen und dynamischen Finite-Element-Berechnung , 1993 .

[31]  Roman Lewandowski,et al.  Non-linear, steady-state vibration of structures by harmonic balance/finite element method , 1992 .

[32]  Wanda Szemplińska-Stupnicka,et al.  The Behavior of Nonlinear Vibrating Systems , 1990 .

[33]  Alberto Cardona,et al.  A reduction method for nonlinear structural dynamic analysis , 1985 .