Formation Control and Tracking of Mobile Robots using Distributed Estimators and A Biologically Inspired Approach

[1]  Y. Joo,et al.  Distributed leader-following formation control for multiple nonholonomic mobile robots via bioinspired neurodynamic approach , 2022, Neurocomputing.

[2]  S. Khodaygan,et al.  A continuous RRT*-based path planning method for non-holonomic mobile robots using B-spline curves , 2022, Journal of Ambient Intelligence and Humanized Computing.

[3]  Peyman Tirandazi,et al.  An efficient coverage and connectivity algorithm based on mobile robots for wireless sensor networks , 2022, Journal of Ambient Intelligence and Humanized Computing.

[4]  P. Eberhard,et al.  Cooperative distributed nonlinear model predictive control of a formation of differentially-driven mobile robots , 2022, Robotics Auton. Syst..

[5]  M. Mittal,et al.  An efficient AR modelling-based electrocardiogram signal analysis for health informatics , 2022, Int. J. Medical Eng. Informatics.

[6]  N. Selvaganesan,et al.  Adaptive fractional order PID controller tuning for brushless DC motor using Artificial Bee Colony algorithm , 2021 .

[7]  S. Chakraborty,et al.  Chaos, antimonotonicity and coexisting attractors in Van der Pol oscillator based electronic circuit , 2021, Analog Integrated Circuits and Signal Processing.

[8]  Vanchinathan Kumarasamy,et al.  Systematic design of multi-objective enhanced genetic algorithm optimized fractional order PID controller for sensorless brushless DC motor drive , 2021, Circuit World.

[9]  K. R. Valluvan,et al.  Review for "An improved incipient whale optimization algorithm based robust fault detection and diagnosis for sensorless brushless DC motor drive under external disturbances" , 2021, International Transactions on Electrical Energy Systems.

[10]  Monika Mittal,et al.  A Critical Review of Feature Extraction Techniques for ECG Signal Analysis , 2021, Journal of The Institution of Engineers (India): Series B.

[11]  Monika Mittal,et al.  A novel feature extraction-based ECG signal analysis , 2021, Journal of The Institution of Engineers (India): Series B.

[12]  N. Saxena,et al.  BP Signal Analysis Using Emerging Techniques and its Validation Using ECG Signal , 2021 .

[13]  Monika Mittal,et al.  Chaos Theory and ARTFA: Emerging Tools for Interpreting ECG Signals to Diagnose Cardiac Arrhythmias , 2021, Wirel. Pers. Commun..

[14]  Hongyao Li,et al.  Energy-constraint output formation for swarm systems with dynamic output feedback control protocols. , 2021, ISA transactions.

[15]  M. Mittal,et al.  ECG signal analysis using CWT, spectrogram and autoregressive technique , 2021, Iran J. Comput. Sci..

[16]  Monika Mittal,et al.  R-peak detection for improved analysis in health informatics , 2021, Int. J. Medical Eng. Informatics.

[17]  Murat Tuna,et al.  A novel secure chaos-based pseudo random number generator based on ANN-based chaotic and ring oscillator: design and its FPGA implementation , 2020, Analog Integrated Circuits and Signal Processing.

[18]  Xinming Li,et al.  Robot target localization and interactive multi-mode motion trajectory tracking based on adaptive iterative learning , 2020, J. Ambient Intell. Humaniz. Comput..

[19]  Zhongbao Luo,et al.  Adaptive sliding mode control of robot based on fuzzy neural network , 2020, J. Ambient Intell. Humaniz. Comput..

[20]  Martin Kom,et al.  Passive–active integrators chaotic oscillator with anti-parallel diodes: analysis and its chaos-based encryption application to protect electrocardiogram signals , 2020, Analog Integrated Circuits and Signal Processing.

[21]  Murat Tuna,et al.  Design, FPGA implementation and statistical analysis of chaos-ring based dual entropy core true random number generator , 2020 .

[22]  Varun Gupta,et al.  QRS Complex Detection Using STFT, Chaos Analysis, and PCA in Standard and Real-Time ECG Databases , 2019, Journal of The Institution of Engineers (India): Series B.

[23]  K. Gan,et al.  Design and analysis of the dynamic frequency divider using the BiCMOS–NDR chaos-based circuit , 2018 .

[24]  Yunhui Liu,et al.  Distributed Estimation and Control for Leader-Following Formations of Nonholonomic Mobile Robots , 2018, IEEE Transactions on Automation Science and Engineering.

[25]  Ahmed Rahmani,et al.  Distributed formation tracking of multi-robot systems with nonholonomic constraint via event-triggered approach , 2018, Neurocomputing.

[26]  K. R. Valluvan,et al.  A Metaheuristic Optimization Approach for Tuning of Fractional-Order PID Controller for Speed Control of Sensorless BLDC Motor , 2017, J. Circuits Syst. Comput..

[27]  Xiang Cao,et al.  Multi-AUV Target Search Based on Bioinspired Neurodynamics Model in 3-D Underwater Environments , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[28]  Antonio Loría,et al.  Leader–Follower Formation and Tracking Control of Mobile Robots Along Straight Paths , 2016, IEEE Transactions on Control Systems Technology.

[29]  Lu Liu,et al.  Distributed Formation Control of Nonholonomic Vehicles Subject to Velocity Constraints , 2016, IEEE Transactions on Industrial Electronics.

[30]  Simon X. Yang,et al.  A biologically inspired approach to tracking control of underactuated surface vessels subject to unknown dynamics , 2015, Expert Syst. Appl..

[31]  Yingmin Jia,et al.  Input-constrained formation control of differential-drive mobile robots: geometric analysis and optimisation , 2014 .

[32]  Abhijit Das,et al.  Cooperative Control of Multi-Agent Systems , 2014 .

[33]  Frank L. Lewis,et al.  Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches , 2013 .

[34]  Ioannis M. Kyprianidis,et al.  Experimental investigation on coverage performance of a chaotic autonomous mobile robot , 2013, Robotics Auton. Syst..

[35]  Ahmed Rahmani,et al.  Leader-follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach , 2013, Robotics Auton. Syst..

[36]  Zhong-Ping Jiang,et al.  Distributed formation control of nonholonomic mobile robots without global position measurements , 2013, Autom..

[37]  Nathan van de Wouw,et al.  Distributed formation control of unicycle robots , 2012, 2012 IEEE International Conference on Robotics and Automation.

[38]  Teresa A. Vidal-Calleja,et al.  Large scale multiple robot visual mapping with heterogeneous landmarks in semi-structured terrain , 2011, Robotics Auton. Syst..

[39]  Domenico Prattichizzo,et al.  Discussion of paper by , 2003 .

[40]  Dongbing Gu,et al.  Receding horizon tracking control of wheeled mobile robots , 2006, IEEE Transactions on Control Systems Technology.

[41]  Rong-Jong Wai,et al.  Adaptive stabilizing and tracking control for a nonlinear inverted-pendulum system via sliding-mode technique , 2006, IEEE Trans. Ind. Electron..

[42]  P. Dudek,et al.  Integrated Circuit Implementation of a Compact Discrete-Time Chaos Generator , 2006 .

[43]  Vijay Kumar,et al.  Leader-to-formation stability , 2004, IEEE Transactions on Robotics and Automation.

[44]  Naomi Ehrich Leonard,et al.  Virtual leaders, artificial potentials and coordinated control of groups , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[45]  Juan A. Méndez,et al.  Obstacle avoidance for a mobile robot: A neuro-fuzzy approach , 2001, Fuzzy Sets Syst..

[46]  Ahmed S. Elwakil,et al.  Chaotic Oscillators Derived from Sinusoidal Oscillators Based on the Current Feedback Op Amp , 2000 .

[47]  Jun-Ho Oh,et al.  Tracking control of a two-wheeled mobile robot using inputoutput linearization , 1999 .

[48]  Shigeo Sato,et al.  Integrated Circuits of Map Chaos Generators , 1999 .

[49]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[50]  Vijay Kumar,et al.  Controlling formations of multiple mobile robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[51]  Henk Nijmeijer,et al.  Tracking Control of Mobile Robots: A Case Study in Backstepping , 1997, Autom..

[52]  Frank L. Lewis,et al.  Control of a nonholonomic mobile robot: backstepping kinematics into dynamics , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[53]  Frank L. Lewis,et al.  Control of a nonholonomic mobile robot using neural networks , 1995, Proceedings of Tenth International Symposium on Intelligent Control.

[54]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990, Bulletin of mathematical biology.

[55]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .