The MINI mixed finite element for the Stokes problem: An experimental investigation
暂无分享,去创建一个
[1] Jiten C. Kalita,et al. Moffatt eddies in the driven cavity: A quantification study by an HOC approach , 2018, Comput. Math. Appl..
[2] D. A. Field. Qualitative measures for initial meshes , 2000 .
[3] Volker John,et al. On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..
[4] M. Benzi. Preconditioning techniques for large linear systems: a survey , 2002 .
[5] G. Tallini,et al. ON THE EXISTENCE OF , 1996 .
[6] S. Repin,et al. ON THE FUNCTIONAL TYPE A POSTERIORI ERROR ESTIMATES FOR THE STOKES PROBLEM. , 2004 .
[7] R. Panton. Incompressible Flow: Panton/Incompressible Flow 4E , 2013 .
[8] A. J. Wathen,et al. Preconditioning , 2015, Acta Numerica.
[9] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[10] Sungyun Lee,et al. Modified Mini finite element for the Stokes problem in ℝ2 or ℝ3 , 2000, Adv. Comput. Math..
[11] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[12] Alessandro Russo,et al. A posteriori error estimators for the Stokes problem , 1995 .
[13] T. Shih,et al. Effects of grid staggering on numerical schemes , 1989 .
[14] R. Verfürth. A posteriori error estimators for the Stokes equations , 1989 .
[15] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[16] Randolph E. Bank,et al. A posteriori error estimates for the Stokes equations: a comparison , 1990 .
[17] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[18] Victor M. Calo,et al. Performance evaluation of block-diagonal preconditioners for the divergence-conforming B-spline discretization of the Stokes system , 2015, J. Comput. Sci..
[19] M. Fortin,et al. A stable finite element for the stokes equations , 1984 .
[20] D. A. Dunavant. High degree efficient symmetrical Gaussian quadrature rules for the triangle , 1985 .
[21] Hehu Xie,et al. Supercloseness and superconvergence of stabilized low-order finite element discretizations of the Stokes Problem , 2011, Math. Comput..
[22] Per-Olof Persson,et al. A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..