The SOCS-Box of HIV-1 Vif Interacts with ElonginBC by Induced-Folding to Recruit Its Cul5-Containing Ubiquitin Ligase Complex

The HIV-1 viral infectivity factor (Vif) protein recruits an E3 ubiquitin ligase complex, comprising the cellular proteins elongin B and C (EloBC), cullin 5 (Cul5) and RING-box 2 (Rbx2), to the anti-viral proteins APOBEC3G (A3G) and APOBEC3F (A3F) and induces their polyubiquitination and proteasomal degradation. In this study, we used purified proteins and direct in vitro binding assays, isothermal titration calorimetry and NMR spectroscopy to describe the molecular mechanism for assembly of the Vif-EloBC ternary complex. We demonstrate that Vif binds to EloBC in two locations, and that both interactions induce structural changes in the SOCS box of Vif as well as EloBC. In particular, in addition to the previously established binding of Vif's BC box to EloC, we report a novel interaction between the conserved Pro-Pro-Leu-Pro motif of Vif and the C-terminal domain of EloB. Using cell-based assays, we further show that this interaction is necessary for the formation of a functional ligase complex, thus establishing a role of this motif. We conclude that HIV-1 Vif engages EloBC via an induced-folding mechanism that does not require additional co-factors, and speculate that these features distinguish Vif from other EloBC specificity factors such as cellular SOCS proteins, and may enhance the prospects of obtaining therapeutic inhibitors of Vif function.

[1]  Xavier Robert,et al.  ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins , 2003, Nucleic Acids Res..

[2]  Y. Sun,et al.  The Multimerization of Human Immunodeficiency Virus Type I Vif Protein , 2001, The Journal of Biological Chemistry.

[3]  Gerhard Wagner,et al.  A solubility-enhancement tag (SET) for NMR studies of poorly behaving proteins , 2001, Journal of biomolecular NMR.

[4]  Xianghui Yu,et al.  Differential Requirement for Conserved Tryptophans in Human Immunodeficiency Virus Type 1 Vif for the Selective Suppression of APOBEC3G and APOBEC3F , 2006, Journal of Virology.

[5]  M. Malim,et al.  Complementation of vif-defective human immunodeficiency virus type 1 by primate, but not nonprimate, lentivirus vif genes , 1995, Journal of virology.

[6]  M. Bycroft,et al.  VHL Mutations Linked to Type 2C von Hippel-Lindau Disease Cause Extensive Structural Perturbations in pVHL* , 2009, Journal of Biological Chemistry.

[7]  Xianghui Yu,et al.  Induction of APOBEC 3 G Ubiquitination and Degradation by an HIV-1 Vif-Cul 5-SCF Complex , 2022 .

[8]  I. Jelesarov,et al.  A survey of the year 2006 literature on applications of isothermal titration calorimetry , 2008, Journal of molecular recognition : JMR.

[9]  J. Marsh,et al.  Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. , 2006, Protein science : a publication of the Protein Society.

[10]  E. Thomas,et al.  A Zinc-binding Region in Vif Binds Cul5 and Determines Cullin Selection* , 2006, Journal of Biological Chemistry.

[11]  Xianghui Yu,et al.  Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines. , 2004, Genes & development.

[12]  M. Malim,et al.  Mutational Analysis of the Human Immunodeficiency Virus Type 1 Vif Protein , 1999, Journal of Virology.

[13]  R. Owens,et al.  Interaction of the Low-Affinity Receptor CD23/FcεRII Lectin Domain with the Fcε3−4 Fragment of Human Immunoglobulin E† , 1997 .

[14]  Y. Xiong,et al.  Structural Insight into the Human Immunodeficiency Virus Vif SOCS Box and Its Role in Human E3 Ubiquitin Ligase Assembly , 2008, Journal of Virology.

[15]  C. Tian,et al.  Assembly of HIV-1 Vif-Cul5 E3 ubiquitin ligase through a novel zinc-binding domain-stabilized hydrophobic interface in Vif. , 2006, Virology.

[16]  M. Sternberg,et al.  Protein structure prediction on the Web: a case study using the Phyre server , 2009, Nature Protocols.

[17]  Mike Tyers,et al.  A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. , 2004, Biochimica et biophysica acta.

[18]  Gideon Schreiber,et al.  Kinetic studies of protein-protein interactions. , 2002, Current opinion in structural biology.

[19]  Shu Zheng,et al.  Primate lentiviral virion infectivity factors are substrate receptors that assemble with cullin 5-E3 ligase through a HCCH motif to suppress APOBEC3G. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Elledge,et al.  Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex , 2002, Nature.

[21]  C. Tisné,et al.  Advances in the structural understanding of Vif proteins. , 2008, Current HIV research.

[22]  H. Dyson,et al.  Insights into the structure and dynamics of unfolded proteins from nuclear magnetic resonance. , 2002, Advances in protein chemistry.

[23]  Yunkai Yu,et al.  Induction of APOBEC3G Ubiquitination and Degradation by an HIV-1 Vif-Cul5-SCF Complex , 2003, Science.

[24]  William B. Redwine,et al.  Characterization of Cullin-box Sequences That Direct Recruitment of Cul2-Rbx1 and Cul5-Rbx2 Modules to Elongin BC-based Ubiquitin Ligases* , 2008, Journal of Biological Chemistry.

[25]  M. Malim,et al.  Antiviral Function of APOBEC3G Can Be Dissociated from Cytidine Deaminase Activity , 2005, Current Biology.

[26]  Y. Xiong,et al.  Characterization of a novel Cullin5 binding domain in HIV-1 Vif. , 2007, Journal of molecular biology.

[27]  Jeffrey C. Hoch,et al.  Fast Assignment of 15N-HSQC Peaks using High-Resolution 3D HNcocaNH Experiments with Non-Uniform Sampling , 2005, Journal of biomolecular NMR.

[28]  Julie D Thompson,et al.  Multiple Sequence Alignment Using ClustalW and ClustalX , 2003, Current protocols in bioinformatics.

[29]  Richard T D'Aquila,et al.  The HIV-1 Vif PPLP motif is necessary for human APOBEC3G binding and degradation. , 2008, Virology.

[30]  Michael Emerman,et al.  HIV-1 accessory proteins--ensuring viral survival in a hostile environment. , 2008, Cell host & microbe.

[31]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[32]  R. Norton,et al.  The SOCS box domain of SOCS3: structure and interaction with the elonginBC-cullin5 ubiquitin ligase. , 2008, Journal of molecular biology.

[33]  G. Wagner,et al.  1-13C amino acid selective labeling in a 2H15N background for NMR studies of large proteins , 2007, Journal of biomolecular NMR.

[34]  M. Malim,et al.  Identification of Amino Acid Residues in APOBEC3G Required for Regulation by Human Immunodeficiency Virus Type 1 Vif and Virion Encapsidation , 2007, Journal of Virology.

[35]  Stefan Knapp,et al.  Crystal structure of the SOCS2–elongin C–elongin B complex defines a prototypical SOCS box ubiquitin ligase , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Malim,et al.  Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein , 2002, Nature.

[37]  Keiichi I Nakayama,et al.  VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. , 2004, Genes & development.

[38]  R. Owens,et al.  Interaction of the low-affinity receptor CD23/Fc epsilonRII lectin domain with the Fc epsilon3-4 fragment of human immunoglobulin E. , 1997, Biochemistry.

[39]  Bruce A Johnson,et al.  Using NMRView to visualize and analyze the NMR spectra of macromolecules. , 2004, Methods in molecular biology.

[40]  Erez Pery,et al.  Identification of an APOBEC3G Binding Site in Human Immunodeficiency Virus Type 1 Vif and Inhibitors of Vif-APOBEC3G Binding , 2007, Journal of Virology.

[41]  J. Marsh,et al.  Sensitivity of secondary structure propensities to sequence differences between α‐ and γ‐synuclein: Implications for fibrillation , 2006 .

[42]  Raymond J. Deshaies,et al.  Function and regulation of cullin–RING ubiquitin ligases , 2005, Nature Reviews Molecular Cell Biology.

[43]  V. Thulasiraman,et al.  Formation of the VHL-elongin BC tumor suppressor complex is mediated by the chaperonin TRiC. , 1999, Molecular cell.

[44]  J. Ladbury,et al.  Survey of the year 2005: literature on applications of isothermal titration calorimetry , 2007, Journal of molecular recognition : JMR.

[45]  Wenyan Zhang,et al.  Characterization of conserved motifs in HIV-1 Vif required for APOBEC3G and APOBEC3F interaction. , 2008, Journal of molecular biology.

[46]  Xiao-Fang Yu,et al.  A Patch of Positively Charged Amino Acids Surrounding the Human Immunodeficiency Virus Type 1 Vif SLVx4Yx9Y Motif Influences Its Interaction with APOBEC3G , 2009, Journal of Virology.

[47]  Stefan Knapp,et al.  Structure of the SOCS4-ElonginB/C Complex Reveals a Distinct SOCS Box Interface and the Molecular Basis for SOCS-Dependent EGFR Degradation , 2007, Structure.

[48]  B. Chesebro,et al.  Effects of CCR5 and CD4 Cell Surface Concentrations on Infections by Macrophagetropic Isolates of Human Immunodeficiency Virus Type 1 , 1998, Journal of Virology.

[49]  V. Pathak,et al.  Identification of Two Distinct Human Immunodeficiency Virus Type 1 Vif Determinants Critical for Interactions with Human APOBEC3G and APOBEC3F , 2007, Journal of Virology.

[50]  David A Case,et al.  Molecular dynamics and NMR spin relaxation in proteins. , 2002, Accounts of chemical research.

[51]  A. Shilatifard,et al.  The Elongin B Ubiquitin Homology Domain , 1999, The Journal of Biological Chemistry.