Probabilistic hindcasts and projections of the coupled climate , carbon cycle , and Atlantic meridional overturning circulation system : A Bayesian fusion of century-scale observations with a simple model

How has the Atlantic Meridional Overturning Circulation (AMOC) varied over the past centuries and what is the risk of an anthropogenic AMOC collapse? We report probabilistic projections of the future climate which improve on previous AMOC projection studies by (i) greatly expanding the considered observational constraints and (ii) carefully sampling the tail areas of the parameter probability distribution function (pdf). We use a Bayesian inversion to constrain a simple model of the coupled climate, carbon cycle, and AMOC systems using observations to derive multi-century hindcasts and projections. Our hindcasts show considerable skill in representing the observational constraints. We show that robust AMOC risk estimates can require carefully sampling the parameter pdfs. We find a low probability of experiencing an AMOC collapse within the 21st century for a business-as-usual emissions scenario. The probability of experiencing an AMOC collapse within two centuries is 1/10. The probability of crossing a forcing threshold and triggering a future AMOC collapse (by 2300) is approximately 1/30 in the 21st century and over 1/3 in the 22nd. Given the simplicity of the model structure and uncertainty in the forcing assumptions, our analysis should be considered a proof of concept and the quantitative conclusions subject to severe caveats.

[1]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[2]  M. Noguer,et al.  Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change , 2002 .

[3]  R. Wood,et al.  Global warming and thermohaline circulation stability , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  D. Etheridge,et al.  Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn , 1996 .

[5]  J. Marotzke,et al.  Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees N. , 2007, Science.

[6]  Gary W. Yohe,et al.  Managing the risks of climate thresholds: uncertainties and information needs , 2008 .

[7]  M. Latif,et al.  Evaluation of Different Methods to Assess Model Projections of the Future Evolution of the Atlantic Meridional Overturning Circulation , 2007 .

[8]  Richard A. Wood,et al.  Global Climatic Impacts of a Collapse of the Atlantic Thermohaline Circulation , 2002 .

[9]  J. Marotzke,et al.  Observed Flow Compensation Associated with the MOC at 26.5°N in the Atlantic , 2007, Science.

[10]  R. Tol,et al.  How overconfident are current projections of carbon dioxide emissions , 2007 .

[11]  Atul K. Jain,et al.  Modeling the effects of two different land cover change data sets on the carbon stocks of plants and soils in concert with CO2 and climate change , 2005 .

[12]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[13]  K. Davis,et al.  A Bayesian calibration of a simple carbon cycle model: The role of observations in estimating and reducing uncertainty , 2008 .

[14]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[15]  A. Weaver,et al.  Carbon‐cycle feedbacks of changes in the Atlantic meridional overturning circulation under future atmospheric CO2 , 2008 .

[16]  T. Bruckner,et al.  Aggregated Carbon cycle, atmospheric chemistry and climate model (ACC2): description of forward and inverse mode , 2007 .

[17]  Hermann Held,et al.  Climate sensitivity estimated from ensemble simulations of glacial climate , 2006 .

[18]  Wolfgang Cramer,et al.  An Integrated Assessment of changes in the thermohaline circulation , 2009 .

[19]  Stefan Rahmstorf,et al.  On the stability of the Atlantic meridional overturning circulation , 2009, Proceedings of the National Academy of Sciences.

[20]  Richard S. J. Tol,et al.  Possible economic impacts of a shutdown of the thermohaline circulation: an application of FUND , 2004 .

[21]  J. Palutikof,et al.  Climate change 2007 : impacts, adaptation and vulnerability , 2001 .

[22]  W. Young,et al.  Control of Large-Scale Heat Transport by Small-Scale Mixing , 2006 .

[23]  Cecilie Mauritzen,et al.  Dilution of the Northern North Atlantic Ocean in Recent Decades , 2005, Science.

[24]  J. Sarmiento,et al.  Anthropogenic CO2 Uptake by the Ocean Based on the Global Chlorofluorocarbon Data Set , 2003, Science.

[25]  Reto Knutti,et al.  Limited Predictability of the Future Thermohaline Circulation Close to an Instability Threshold. , 2002 .

[26]  Fortunat Joos,et al.  Use of a simple model for studying oceanic tracer distributions and the global carbon cycle , 1992 .

[27]  K. Speer,et al.  Global Ocean Meridional Overturning , 2007 .

[28]  George M. Woodwell,et al.  Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance , 1998 .

[29]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[30]  M. G. Morgan,et al.  Expert judgements on the response of the Atlantic meridional overturning circulation to climate change , 2007 .

[31]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[32]  H. Bryden,et al.  Slowing of the Atlantic meridional overturning circulation at 25° N , 2005, Nature.

[33]  M. Latif,et al.  Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation , 2000 .

[34]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[35]  Syukuro Manabe,et al.  Multiple-Century Response of a Coupled Ocean-Atmosphere Model to an Increase of Atmospheric Carbon Dioxide , 1994 .

[36]  C. D. Keeling,et al.  Atmospheric CO 2 records from sites in the SIO air sampling network , 1994 .

[37]  Arnold Zellner,et al.  BAYESIAN ANALYSIS OF THE REGRESSION MODEL WITH AUTOCORRELATED ERRORS. , 1964 .

[38]  Webster Mort Avoiding Dangerous Climate Change , 2007 .

[39]  Robert J Lempert,et al.  A new decision sciences for complex systems , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  F. Joos,et al.  Probabilistic climate change projections using neural networks , 2003 .

[41]  William E. Johns,et al.  Temporal Variability of the Atlantic Meridional Overturning Circulation at 26.5°N , 2007, Science.

[42]  Martijn Gough Climate change , 2009, Canadian Medical Association Journal.

[43]  N. Ramankutty,et al.  Estimating historical changes in global land cover: Croplands from 1700 to 1992 , 1999 .

[44]  N. Urban,et al.  Complementary observational constraints on climate sensitivity , 2009 .

[45]  Andrei P. Sokolov,et al.  Investigating the Causes of the Response of the Thermohaline Circulation to Past and Future Climate Changes , 2006 .

[46]  P. Jones,et al.  Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850 , 2006 .

[47]  David McInerney,et al.  The dynamics of learning about a climate threshold , 2008 .

[48]  A. Timmermann,et al.  Tropical Air-Sea Interactions Accelerate the Recovery of the Atlantic Meridional Overturning Circulation after a Major Shutdown , 2007 .

[49]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[50]  Klaus Keller,et al.  Uncertain climate thresholds and optimal economic growth , 2004 .

[51]  Andrei P. Sokolov,et al.  Quantifying Uncertainties in Climate System Properties with the Use of Recent Climate Observations , 2002, Science.

[52]  Thomas Slawig,et al.  A low-order model for the response of the Atlantic thermohaline circulation to climate change , 2004 .

[53]  Uwe Mikolajewicz,et al.  Long-term ice sheet–climate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model , 2008 .

[54]  J. Marotzke,et al.  Observed flow compensation associated with the MOC at 26.5 degrees N in the Atlantic. , 2007, Science.

[55]  R. Voss,et al.  Climate Dynamics �2001) 18: 189±202 Ó Springer-Verlag 2001 , 2000 .

[56]  James D. Annan,et al.  Efficiently Constraining Climate Sensitivity with Ensembles of Paleoclimate Simulations , 2005 .

[57]  David Draper,et al.  Assessment and Propagation of Model Uncertainty , 2011 .

[58]  Crowley,et al.  Atmospheric science: Methane rises from wetlands , 2011, Nature.

[59]  A. Obata,et al.  Climate–Carbon Cycle Model Response to Freshwater Discharge into the North Atlantic , 2007 .

[60]  S. Schneider,et al.  Assessing key vulnerabilities and the risk from climate change Coordinating Lead , 2007 .

[61]  C. Brooks Climatic Change , 1913, Nature.

[62]  Robin K. S. Hankin,et al.  Towards the probability of rapid climate change , 2006 .

[63]  B. L. Beattie,et al.  Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow , 2002 .

[64]  A. Gorbovsky [The generation]. , 1970, ADM; revista de la Asociacion Dental Mexicana.

[65]  Gary W. Yohe,et al.  Reducing the risk of a collapse of the Atlantic thermohaline circulation , 2006 .

[66]  M. Sarofim,et al.  Uncertainty in emissions projections for climate models , 2002 .

[67]  W. Broecker The great ocean conveyor , 2008 .

[68]  Mark E. Borsuk,et al.  Robust Bayesian uncertainty analysis of climate system properties using Markov chain Monte Carlo methods , 2007 .

[69]  James R. Bence,et al.  Analysis of Short Time Series: Correcting for Autocorrelation , 1995 .

[70]  G. Hegerl,et al.  Climate sensitivity constrained by temperature reconstructions over the past seven centuries , 2006, Nature.

[71]  Jorge L. Sarmiento,et al.  Oceanic Carbon Dioxide Uptake in a Model of Century-Scale Global Warming , 1996, Science.

[72]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[73]  N. Urban,et al.  Using tracer observations to reduce the uncertainty of ocean diapycnal mixing and climate–carbon cycle projections , 2009 .

[74]  H. Stommel,et al.  Thermohaline Convection with Two Stable Regimes of Flow , 1961 .

[75]  Stefan Rahmstorf,et al.  Thermohaline Circulation Changes: A Question of Risk Assessment , 2005 .

[76]  K. Koltermann,et al.  How much is the ocean really warming? , 2007 .

[77]  A. Baumgartner The world water balance , 1975 .