Natural language speech user interfaces offer a compelling choice of user interaction for the automotive market. With the increasing number of domains in which speech applications are applied, drivers must currently memorize many command words to control traditional speech interfaces. In contrast, natural language interfaces demand only a basic understanding of the system model instead of memorizing keywords and predefined patterns. To utilize natural language interfaces optimally, designers need to better comprehend how people utter their requests to express their intentions. In this study, we collected a corpus of utterances from users who interacted freely with an automotive natural language speech application. We analyzed the corpus by employing a corpus linguistic technique. As a result, natural language utterances can be classified into three components: information data, context relevant words, and non context relevant vocabulary. Applying this classification, users tended to repeat similar utterance patterns composed from a very limited set of different words. Most of the vocabulary in longer utterances was found to be non context restrictive providing no information. Moreover, users could be distinguished by their language patterns. Finally, this information can be used for the development of natural language speech applications. Some initial ideas are discussed in the paper.
[1]
Sean Wallis,et al.
Knowledge Discovery in Grammatically Analysed Corpora
,
2001,
Data Mining and Knowledge Discovery.
[2]
Laila Dybkjær,et al.
Spoken Multimodal Human-Computer Dialogue in Mobile Environments
,
2005
.
[3]
Harald Höge,et al.
Automotive Speech Recognition
,
2008
.
[4]
Morena Danieli,et al.
Designing Error Recovery Dialogs
,
2004
.
[5]
N. Rescher.
Complexity: A Philosophical Overview
,
1998
.
[6]
James H. Martin,et al.
Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition
,
2000
.
[7]
Khalil Sima'an,et al.
Wired for Speech: How Voice Activates and Advances the Human-Computer Relationship
,
2006,
Computational Linguistics.
[8]
Elizabeth Zoltan-Ford,et al.
How to Get People to Say and Type What Computers Can Understand
,
1991,
Int. J. Man Mach. Stud..
[9]
Manfred Tscheligi,et al.
Proceedings of the 10th International Conference on Automotive User Interfaces and Interactive Vehicular Applications
,
2011,
AutomotiveUI 2011.
[10]
Andrew Wilson,et al.
Corpus linguistics : an introduction.
,
2001
.