Large-Area Synthesis of Ferromagnetic Fe5- x GeTe2 /Graphene van der Waals Heterostructures with Curie Temperature above Room Temperature.

Van der Waals (vdW) heterostructures combining layered ferromagnets and other 2D crystals are promising building blocks for the realization of ultracompact devices with integrated magnetic, electronic, and optical functionalities. Their implementation in various technologies depends strongly on the development of a bottom-up scalable synthesis approach allowing for realizing highly uniform heterostructures with well-defined interfaces between different 2D-layered materials. It is also required that each material component of the heterostructure remains functional, which ideally includes ferromagnetic order above room temperature for 2D ferromagnets. Here, it is demonstrated that the large-area growth of Fe5- x GeTe2 /graphene heterostructures is achieved by vdW epitaxy of Fe5- x GeTe2 on epitaxial graphene. Structural characterization confirms the realization of a continuous vdW heterostructure film with a sharp interface between Fe5- x GeTe2 and graphene. Magnetic and transport studies reveal that the ferromagnetic order persists well above 300 K with a perpendicular magnetic anisotropy. In addition, epitaxial graphene on SiC(0001) continues to exhibit a high electronic quality. These results represent an important advance beyond nonscalable flake exfoliation and stacking methods, thus marking a crucial step toward the implementation of ferromagnetic 2D materials in practical applications.

[1]  P. Svedlindh,et al.  A Room‐Temperature Spin‐Valve with van der Waals Ferromagnet Fe5GeTe2/Graphene Heterostructure , 2023, Advanced materials.

[2]  Y. Kvashnin,et al.  Unusual Magnetic Features in Two-Dimensional Fe5GeTe2 Induced by Structural Reconstructions , 2022, The journal of physical chemistry letters.

[3]  Hyun Ho Kim,et al.  The Magnetic Genome of Two-Dimensional van der Waals Materials , 2022, ACS nano.

[4]  Yu-Jun Zhao,et al.  Electric Control of Exchange Bias Effect in FePS3-Fe5GeTe2 van der Waals Heterostructures. , 2022, Nano letters.

[5]  Jijun Zhao,et al.  Layer-dependent magnetic phase diagram in FenGeTe2 (3 ≤ n ≤ 7) ultrathin films , 2021, Communications Physics.

[6]  S. Roche,et al.  Magnetism, symmetry and spin transport in van der Waals layered systems , 2021, Nature Reviews Physics.

[7]  J. Zou,et al.  Tuning 2D magnetism in Fe3+XGeTe2 films by element doping , 2021, National science review.

[8]  A. Marty,et al.  Large-scale epitaxy of two-dimensional van der Waals room-temperature ferromagnet Fe5GeTe2 , 2021, npj 2D Materials and Applications.

[9]  S. Roche,et al.  Van der Waals heterostructures for spintronics and opto-spintronics , 2021, Nature Nanotechnology.

[10]  Xingji Li,et al.  Phase-pure two-dimensional FexGeTe2 magnets with near-room-temperature TC , 2021, Nano Research.

[11]  J. Lopes,et al.  Synthesis of hexagonal boron nitride: From bulk crystals to atomically thin films , 2021 .

[12]  A. I. Figueroa,et al.  Large-area van der Waals epitaxy and magnetic characterization of Fe3GeTe2 films on graphene , 2021, 2D Materials.

[13]  C. You,et al.  Direct Observation of Fe‐Ge Ordering in Fe5−xGeTe2 Crystals and Resultant Helimagnetism , 2021, Advanced Functional Materials.

[14]  Yu-Jun Zhao,et al.  Gate-Controlled Magnetic Phase Transition in a van der Waals Magnet Fe5GeTe2. , 2020, Nano letters.

[15]  S. Parkin,et al.  Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer , 2020, Science.

[16]  T. Zhao,et al.  Spontaneous (Anti)meron Chains in the Domain Walls of van der Waals Ferromagnetic Fe5−xGeTe2 , 2020, Advanced materials.

[17]  Xiaotang Hu,et al.  Initial stage of MBE growth of MoSe2 monolayer , 2020, Nanotechnology.

[18]  P. Cheng,et al.  Tunable magnetic properties in van der Waals crystals (Fe1−xCox)5GeTe2 , 2020, 2003.02728.

[19]  N. I. Borgardt,et al.  Influence of Proximity to Supporting Substrate on van der Waals Epitaxy of Atomically Thin Graphene/hexagonal Boron Nitride Heterostructures. , 2020, ACS applied materials & interfaces.

[20]  Kenji Watanabe,et al.  Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal , 2020, Science Advances.

[21]  S. Pennycook,et al.  Phase-controllable growth of ultrathin 2D magnetic FeTe crystals , 2019, Nature Communications.

[22]  K. Novoselov,et al.  Magnetic 2D materials and heterostructures , 2019, Nature Nanotechnology.

[23]  Changgu Lee,et al.  Antiferromagnetic coupling of van der Waals ferromagnetic Fe3GeTe2 , 2019, Nanotechnology.

[24]  Xiaodong Xu,et al.  Ferromagnetism Near Room Temperature in the Cleavable van der Waals Crystal Fe5GeTe2. , 2019, ACS nano.

[25]  Xiang Zhang,et al.  Two-dimensional magnetic crystals and emergent heterostructure devices , 2019, Science.

[26]  D. Johrendt,et al.  The van der Waals Ferromagnets Fe5-δGeTe2and Fe5-δ-xNixGeTe2- Crystal Structure, Stacking Faults, and Magnetic Properties , 2018, Zeitschrift für anorganische und allgemeine Chemie.

[27]  J. Shim,et al.  Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal , 2018, Nature Materials.

[28]  C. N. Lau,et al.  Raman Spectroscopy, Photocatalytic Degradation, and Stabilization of Atomically Thin Chromium Tri-iodide. , 2018, Nano letters.

[29]  Wang Yao,et al.  Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2 , 2018, Nature Materials.

[30]  A. Marty,et al.  Beyond van der Waals Interaction: The Case of MoSe2 Epitaxially Grown on Few-Layer Graphene. , 2018, ACS nano.

[31]  Y. Sheng,et al.  Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy , 2017, npj 2D Materials and Applications.

[32]  M. Nakano,et al.  Layer-by-Layer Epitaxial Growth of Scalable WSe2 on Sapphire by Molecular Beam Epitaxy. , 2017, Nano letters.

[33]  Lauren A. Galves,et al.  The effect of the SiC(0001) surface morphology on the growth of epitaxial mono-layer graphene nanoribbons , 2017 .

[34]  Lauren A. Galves,et al.  Coincident-site lattice matching during van der Waals epitaxy , 2015, Scientific Reports.

[35]  S. Thakur,et al.  Doping of Graphene by Low-Energy Ion Beam Implantation: Structural, Electronic, and Transport Properties. , 2015, Nano letters.

[36]  A. I. Figueroa,et al.  X-ray magnetic circular dichroism—A versatile tool to study magnetism , 2014 .

[37]  A. Ouerghi,et al.  High Electron Mobility in Epitaxial Graphene on 4H-SiC(0001) via post-growth annealing under hydrogen , 2014, Scientific Reports.

[38]  C. Serna,et al.  Progress in Crystal Growth and Characterization of Materials , 2014 .

[39]  Wei Chen,et al.  Large room-temperature quantum linear magnetoresistance in multilayered epitaxial graphene: Evidence for two-dimensional magnetotransport , 2012 .

[40]  C. Berger,et al.  Epitaxial graphene , 2007, 0704.0285.

[41]  M. H. Oliveira,et al.  Influence of the silicon carbide surface morphology on the epitaxial graphene formation , 2011 .

[42]  L. Kienle,et al.  Fe3GeTe2 and Ni3GeTe2 – Two New Layered Transition‐Metal Compounds: Crystal Structures, HRTEM Investigations, and Magnetic and Electrical Properties , 2006 .