Large-Area Synthesis of Ferromagnetic Fe5- x GeTe2 /Graphene van der Waals Heterostructures with Curie Temperature above Room Temperature.
暂无分享,去创建一个
A. I. Figueroa | S. Valenzuela | R. Engel-Herbert | M. Ramsteiner | J. Herfort | M. Hanke | A. Trampert | L. Aballe | L. Camosi | M. Valvidares | J. Lopes | M. Schmidbauer | H. Lv | C. Guillemard | I. Aguirre | Alessandra da Silva | Jürgen Schubert | Jürgen Schubert
[1] P. Svedlindh,et al. A Room‐Temperature Spin‐Valve with van der Waals Ferromagnet Fe5GeTe2/Graphene Heterostructure , 2023, Advanced materials.
[2] Y. Kvashnin,et al. Unusual Magnetic Features in Two-Dimensional Fe5GeTe2 Induced by Structural Reconstructions , 2022, The journal of physical chemistry letters.
[3] Hyun Ho Kim,et al. The Magnetic Genome of Two-Dimensional van der Waals Materials , 2022, ACS nano.
[4] Yu-Jun Zhao,et al. Electric Control of Exchange Bias Effect in FePS3-Fe5GeTe2 van der Waals Heterostructures. , 2022, Nano letters.
[5] Jijun Zhao,et al. Layer-dependent magnetic phase diagram in FenGeTe2 (3 ≤ n ≤ 7) ultrathin films , 2021, Communications Physics.
[6] S. Roche,et al. Magnetism, symmetry and spin transport in van der Waals layered systems , 2021, Nature Reviews Physics.
[7] J. Zou,et al. Tuning 2D magnetism in Fe3+XGeTe2 films by element doping , 2021, National science review.
[8] A. Marty,et al. Large-scale epitaxy of two-dimensional van der Waals room-temperature ferromagnet Fe5GeTe2 , 2021, npj 2D Materials and Applications.
[9] S. Roche,et al. Van der Waals heterostructures for spintronics and opto-spintronics , 2021, Nature Nanotechnology.
[10] Xingji Li,et al. Phase-pure two-dimensional FexGeTe2 magnets with near-room-temperature TC , 2021, Nano Research.
[11] J. Lopes,et al. Synthesis of hexagonal boron nitride: From bulk crystals to atomically thin films , 2021 .
[12] A. I. Figueroa,et al. Large-area van der Waals epitaxy and magnetic characterization of Fe3GeTe2 films on graphene , 2021, 2D Materials.
[13] C. You,et al. Direct Observation of Fe‐Ge Ordering in Fe5−xGeTe2 Crystals and Resultant Helimagnetism , 2021, Advanced Functional Materials.
[14] Yu-Jun Zhao,et al. Gate-Controlled Magnetic Phase Transition in a van der Waals Magnet Fe5GeTe2. , 2020, Nano letters.
[15] S. Parkin,et al. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer , 2020, Science.
[16] T. Zhao,et al. Spontaneous (Anti)meron Chains in the Domain Walls of van der Waals Ferromagnetic Fe5−xGeTe2 , 2020, Advanced materials.
[17] Xiaotang Hu,et al. Initial stage of MBE growth of MoSe2 monolayer , 2020, Nanotechnology.
[18] P. Cheng,et al. Tunable magnetic properties in van der Waals crystals (Fe1−xCox)5GeTe2 , 2020, 2003.02728.
[19] N. I. Borgardt,et al. Influence of Proximity to Supporting Substrate on van der Waals Epitaxy of Atomically Thin Graphene/hexagonal Boron Nitride Heterostructures. , 2020, ACS applied materials & interfaces.
[20] Kenji Watanabe,et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal , 2020, Science Advances.
[21] S. Pennycook,et al. Phase-controllable growth of ultrathin 2D magnetic FeTe crystals , 2019, Nature Communications.
[22] K. Novoselov,et al. Magnetic 2D materials and heterostructures , 2019, Nature Nanotechnology.
[23] Changgu Lee,et al. Antiferromagnetic coupling of van der Waals ferromagnetic Fe3GeTe2 , 2019, Nanotechnology.
[24] Xiaodong Xu,et al. Ferromagnetism Near Room Temperature in the Cleavable van der Waals Crystal Fe5GeTe2. , 2019, ACS nano.
[25] Xiang Zhang,et al. Two-dimensional magnetic crystals and emergent heterostructure devices , 2019, Science.
[26] D. Johrendt,et al. The van der Waals Ferromagnets Fe5-δGeTe2and Fe5-δ-xNixGeTe2- Crystal Structure, Stacking Faults, and Magnetic Properties , 2018, Zeitschrift für anorganische und allgemeine Chemie.
[27] J. Shim,et al. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal , 2018, Nature Materials.
[28] C. N. Lau,et al. Raman Spectroscopy, Photocatalytic Degradation, and Stabilization of Atomically Thin Chromium Tri-iodide. , 2018, Nano letters.
[29] Wang Yao,et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2 , 2018, Nature Materials.
[30] A. Marty,et al. Beyond van der Waals Interaction: The Case of MoSe2 Epitaxially Grown on Few-Layer Graphene. , 2018, ACS nano.
[31] Y. Sheng,et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films grown by molecular beam epitaxy , 2017, npj 2D Materials and Applications.
[32] M. Nakano,et al. Layer-by-Layer Epitaxial Growth of Scalable WSe2 on Sapphire by Molecular Beam Epitaxy. , 2017, Nano letters.
[33] Lauren A. Galves,et al. The effect of the SiC(0001) surface morphology on the growth of epitaxial mono-layer graphene nanoribbons , 2017 .
[34] Lauren A. Galves,et al. Coincident-site lattice matching during van der Waals epitaxy , 2015, Scientific Reports.
[35] S. Thakur,et al. Doping of Graphene by Low-Energy Ion Beam Implantation: Structural, Electronic, and Transport Properties. , 2015, Nano letters.
[36] A. I. Figueroa,et al. X-ray magnetic circular dichroism—A versatile tool to study magnetism , 2014 .
[37] A. Ouerghi,et al. High Electron Mobility in Epitaxial Graphene on 4H-SiC(0001) via post-growth annealing under hydrogen , 2014, Scientific Reports.
[38] C. Serna,et al. Progress in Crystal Growth and Characterization of Materials , 2014 .
[39] Wei Chen,et al. Large room-temperature quantum linear magnetoresistance in multilayered epitaxial graphene: Evidence for two-dimensional magnetotransport , 2012 .
[40] C. Berger,et al. Epitaxial graphene , 2007, 0704.0285.
[41] M. H. Oliveira,et al. Influence of the silicon carbide surface morphology on the epitaxial graphene formation , 2011 .
[42] L. Kienle,et al. Fe3GeTe2 and Ni3GeTe2 – Two New Layered Transition‐Metal Compounds: Crystal Structures, HRTEM Investigations, and Magnetic and Electrical Properties , 2006 .