H2S modified atomic layer deposition process for photocatalytic TiO2 thin films

H2S modified TiO2 films were grown by atomic layer deposition (ALD) using TiCl4, H2S and water as precursors. The films were characterized by XRD, XPS, TOF-SIMS, SEM and UV-VIS spectrometry. Photocatalytic activities of the films under UV and visible light were determined by the degradation of a thin layer of stearic acid. Light induced superhydrophilicity of the films was also studied. Although the sulfur content of the films was very low, substantial modification of the film properties occurred. All the films prepared at 400 and 500 °C with H2S were photocatalytically active under visible light. Photocatalytic activity under UV irradiation of the H2S modified films was also drastically improved when proper deposition parameters were applied.

[1]  K. Asai,et al.  Visible Light-Induced Degradation of Methylene Blue on S-doped TiO2 , 2003 .

[2]  V. Nadtochenko,et al.  Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light. , 2005, The journal of physical chemistry. B.

[3]  Mikko Ritala,et al.  Atomic Layer Deposition of Photocatalytic TiO2 Thin Films from Titanium Tetramethoxide and Water , 2004 .

[4]  A. Larsson,et al.  Chemical vapour deposition of κ-Al2O3 , 2001 .

[5]  Adam Heller,et al.  Photooxidative self-cleaning transparent titanium dioxide films on glass , 1995 .

[6]  A. Fujishima,et al.  PHOTODECOMPOSITION OF A LANGMUIR-BLODGETT FILM OF STEARIC ACID ON TIO2 FILM OBSERVED BY IN SITU ATOMIC FORCE MICROSCOPY AND FT-IR , 1997 .

[7]  H. Yamashita,et al.  Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. , 1999, Journal of synchrotron radiation.

[8]  G. Colón,et al.  Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst , 2006 .

[9]  M. Hoffmann,et al.  Oxidative Power of Nitrogen-Doped TiO2 Photocatalysts under Visible Illumination , 2004 .

[10]  C. Mitterer,et al.  Influence of hydrogen sulfide addition on the alumina deposition by plasma CVD , 2005 .

[11]  藤嶋 昭,et al.  TiO[2] photocatalysis : fundamentals and applications , 1999 .

[12]  S. Matsuzawa,et al.  Preparation of a visible light-responsive photocatalyst from a complex of Ti4+ with a nitrogen-containing ligand , 2004 .

[13]  Chunlei Yang,et al.  PHOTOCATALYTIC ACTIVITY OF WOX-TIO2 UNDER VISIBLE LIGHT IRRADIATION , 2001 .

[14]  S. Manorama,et al.  S-, N- and C-doped titanium dioxide nanoparticles: Synthesis, characterization and redox charge transfer study , 2005 .

[15]  OhnoTeruhisa,et al.  Photocatalytic Activity of S-doped TiO2 Photocatalyst under Visible Light , 2003 .

[16]  S. Haukka,et al.  Processing of catalysts by atomic layer epitaxy: modification of supports , 1997 .

[17]  Keisuke Asai,et al.  Band gap narrowing of titanium dioxide by sulfur doping , 2002 .

[18]  X. Bokhimi,et al.  Sulfate Ions in Titania Polymorphs , 2004 .

[19]  M. Ritala,et al.  Atomic layer deposition of TiO2−xNx thin films for photocatalytic applications , 2006 .

[20]  Toshiki Tsubota,et al.  Photocatalytic Activity of a TiO2 Photocatalyst Doped with C4+ and S4+ Ions Having a Rutile Phase Under Visible Light , 2004 .

[21]  S. Yin,et al.  Synthesis of excellent visible-light responsive TiO2−xNy photocatalyst by a homogeneous precipitation-solvothermal process , 2005 .

[22]  K. Asai,et al.  Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies , 2003 .

[23]  T. Tachikawa,et al.  Photocatalytic Oxidation Reactivity of Holes in the Sulfur- and Carbon-Doped TiO2 Powders Studied by Time-Resolved Diffuse Reflectance Spectroscopy , 2004 .

[24]  D. Blake Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air: Update Number 1 to June, 1995 , 1995 .

[25]  A. Mills,et al.  Simultaneous monitoring of the destruction of stearic acid and generation of carbon dioxide by self-cleaning semiconductor photocatalytic films , 2006 .

[26]  Andrew Mills,et al.  An overview of semiconductor photocatalysis , 1997 .

[27]  Jaan Aarik,et al.  Control of thin film structure by reactant pressure in atomic layer deposition of TiO2 , 1996 .

[28]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[29]  M. Anpo,et al.  Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation.: The applications of metal ion-implantation techniques to semiconducting TiO2 and Ti/zeolite catalysts , 2002 .

[30]  S. Yin,et al.  Visible-light induced photocatalytic activity of TiO2−xAy (A = N, S) prepared by precipitation route , 2006 .

[31]  K. Wada,et al.  Fabrication and photocatalytic characterizations of ordered nanoporous X-doped (X = N, C, S, Ru, Te, and Si) TiO2/Al2O3 films on ITO/glass. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[32]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[33]  Xinjun Li,et al.  Correlation between photoreactivity and photophysics of sulfated TiO2 photocatalyst , 2005 .

[34]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[35]  Jiaguo Yu,et al.  Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. , 2005, Environmental science & technology.

[36]  Mikko Ritala,et al.  Atomic layer deposition (ALD): from precursors to thin film structures , 2002 .

[37]  M. Ritala,et al.  Atomic layer deposition in nanometer-level replication of cellulosic substances and preparation of photocatalytic TiO2/cellulose composites. , 2005, Journal of the American Chemical Society.

[38]  Mikko Ritala,et al.  Effect of water dose on the atomic layer deposition rate of oxide thin films , 2000 .

[39]  K. Asai,et al.  Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light , 2004 .

[40]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[41]  D. Ollis Contaminant degradation in water. , 1985, Environmental science & technology.

[42]  F. Saito,et al.  Synthesis of a Visible-Light Active TiO2−xSx Photocatalyst by Means of Mechanochemical Doping , 2004 .

[43]  Markku Ylilammi,et al.  Optical determination of the film thicknesses in multilayer thin film structures , 1993 .

[44]  J. Yates,et al.  The Effect of Nitrogen Ion Implantation on the Photoactivity of TiO2 Rutile Single Crystals , 2004 .

[45]  James L. Gole,et al.  Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale , 2004 .

[46]  T. Perng,et al.  Photoelectrochemical properties of sulfidized TiO2 electrodes , 1995 .

[47]  Tuomo Suntola,et al.  Atomic Layer Epitaxy , 1989 .

[48]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[49]  K. Asai,et al.  Analysis of electronic structures of 3d transition metal-doped TiO 2 based on band calculations , 2002 .

[50]  T. Ishibashi,et al.  Transient IR Absorption Study of Charge Carriers Photogenerated in Sulfur-doped TiO2 , 2006 .

[51]  Koji Takeuchi,et al.  Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal , 2000 .

[52]  Fang Jiang,et al.  Aqueous Cr(VI) photo-reduction catalyzed by TiO2 and sulfated TiO2. , 2006, Journal of hazardous materials.

[53]  D. W. Sheel,et al.  The role of nitrogen doping on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition , 2006 .

[54]  I. Parkin,et al.  X-ray diffraction area mapping of preferred orientation and phase change in TiO2 thin films deposited by chemical vapor deposition. , 2006, Journal of the American Chemical Society.

[55]  G. Colón,et al.  Photocatalytic behaviour of sulphated TiO2 for phenol degradation , 2003 .

[56]  Didier Robert,et al.  Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant , 2004 .

[57]  A. Fujishima,et al.  TiO2 Photocatalysis: A Historical Overview and Future Prospects , 2005 .

[58]  J. Gole,et al.  Enhanced Nitrogen Doping in TiO2 Nanoparticles , 2003 .

[59]  L. Gao,et al.  Codoped Rutile TiO2 as a New Photocatalyst for Visible Light Irradiation , 2004 .

[60]  R. Swanepoel Determination of the thickness and optical constants of amorphous silicon , 1983 .

[61]  N. Keller,et al.  Gas phase photocatalytic removal of toluene effluents on sulfated titania , 2005 .