Graph-based convolutional and block LDPC codes

We consider regular block and convolutional LDPC codes determined by paritycheck matrices with rows of a fixed weight and columns of weight 2. Such codes can be described by graphs, and the minimum distance of a code coincides with the girth of the corresponding graph. We consider a description of such codes in the form of tail-biting convolutional codes. Long codes are constructed from short ones using the “voltage graph” method. On this way we construct new codes, find a compact description for many known optimal codes, and thus simplify the coding for such codes. We obtain an asymptotic lower bound on the girth of the corresponding graphs. We also present tables of codes.

[1]  Evangelos Eleftheriou,et al.  On the computation of the minimum distance of low-density parity-check codes , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[2]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[3]  Felix Lazebnik,et al.  New upper bounds on the order of cages , 1996, Electron. J. Comb..

[4]  Geoffrey Exoo,et al.  Voltage Graphs, Group Presentations and Cages , 2004, Electron. J. Comb..

[5]  Daniel J. Costello,et al.  LDPC block and convolutional codes based on circulant matrices , 2004, IEEE Transactions on Information Theory.

[6]  Rolf Johannesson,et al.  Asymptotically Good Woven Codes with Fixed Constituent Convolutional Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[7]  Norman Biggs,et al.  Constructions for Cubic Graphs with Large Girth , 1998, Electron. J. Comb..

[8]  Felix Lazebnik,et al.  Upper Bounds on the Order of Cages , 1996 .

[9]  Mikael Skoglund,et al.  Diversity–Multiplexing Tradeoff in MIMO Channels With Partial CSIT , 2007, IEEE Transactions on Information Theory.

[10]  Ali Emre Pusane,et al.  On Deriving Good LDPC Convolutional Codes from QC LDPC Block Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[11]  Jack K. Wolf,et al.  On Tail Biting Convolutional Codes , 1986, IEEE Trans. Commun..

[12]  Sunghwan Kim,et al.  Quasi-Cyclic Low-Density Parity-Check Codes With Girth Larger Than $12$ , 2007, IEEE Transactions on Information Theory.

[13]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[14]  Victor K.-W. Wei,et al.  Generalized Hamming weights for linear codes , 1991, IEEE Trans. Inf. Theory.

[15]  Marc P. C. Fossorier,et al.  Quasi-Cyclic Low-Density Parity-Check Codes From Circulant Permutation Matrices , 2004, IEEE Trans. Inf. Theory.

[16]  Michael Liebelt,et al.  Quasi-Cyclic LDPC Codes of Column-Weight Two Using a Search Algorithm , 2007, EURASIP J. Adv. Signal Process..

[17]  Daniel J. Costello,et al.  Convolutional codes for iterative decoding , 2008, 2008 IEEE 10th International Symposium on Spread Spectrum Techniques and Applications.

[18]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[19]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[20]  José M. F. Moura,et al.  The design of structured regular LDPC codes with large girth , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[21]  D. Mackay,et al.  Evaluation of Gallager Codes for Short Block Length and High Rate Applications , 2001 .

[22]  R. M. Tanner,et al.  A Class of Group-Structured LDPC Codes , 2001 .

[23]  G. Solomon,et al.  A Connection Between Block and Convolutional Codes , 1979 .

[24]  G. A. Margulis,et al.  Explicit constructions of graphs without short cycles and low density codes , 1982, Comb..

[25]  G. Exoo,et al.  Dynamic Cage Survey , 2011 .

[26]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[27]  Michael Liebelt,et al.  High Girth Column-Weight-Two LDPC Codes Based on Distance Graphs , 2007, EURASIP J. Wirel. Commun. Netw..