K0.6CoO2-xNx porous nanoframe: A co-enhanced ionic and electronic transmission for potassium ion batteries

[1]  Kun Zhang,et al.  A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries , 2020 .

[2]  Bingan Lu,et al.  Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. , 2019, Chemical communications.

[3]  Qiyao Yu,et al.  Tuning defect and hollow size of metallic KxCoF3 for ultrastable potassium storage , 2019, Energy Storage Materials.

[4]  Chenghao Yang,et al.  Design of TiO2eC hierarchical tubular heterostructures for high performance potassium ion batteries , 2019, Nano Energy.

[5]  Yuqing Liu,et al.  Yolk–Shell Structured FeP@C Nanoboxes as Advanced Anode Materials for Rechargeable Lithium‐/Potassium‐Ion Batteries , 2019, Advanced Functional Materials.

[6]  Chenghao Yang,et al.  N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage , 2019, Chemical Engineering Journal.

[7]  Xiulin Fan,et al.  Extremely stable antimony–carbon composite anodes for potassium-ion batteries , 2019, Energy & Environmental Science.

[8]  Dan Li,et al.  SnO2 nanosheets grown on stainless steel mesh as a binder free anode for potassium ion batteries , 2019, Journal of Electroanalytical Chemistry.

[9]  Yitai Qian,et al.  Micron-Sized Nanoporous Antimony with Tunable Porosity for High-Performance Potassium-Ion Batteries. , 2018, ACS nano.

[10]  K. Kubota,et al.  Polyanionic Compounds for Potassium-Ion Batteries. , 2018, Chemical record.

[11]  Chenghao Yang,et al.  High pyridine N-doped porous carbon derived from metal–organic frameworks for boosting potassium-ion storage , 2018 .

[12]  Chenghao Yang,et al.  Nitrogen-doped bamboo-like carbon nanotubes as anode material for high performance potassium ion batteries , 2018 .

[13]  G. Yin,et al.  Metallic Octahedral CoSe2 Threaded by N‐Doped Carbon Nanotubes: A Flexible Framework for High‐Performance Potassium‐Ion Batteries , 2018, Advanced science.

[14]  Wei Wang,et al.  Sulfur/Oxygen Codoped Porous Hard Carbon Microspheres for High‐Performance Potassium‐Ion Batteries , 2018 .

[15]  W. Park,et al.  KVP2O7 as a Robust High‐Energy Cathode for Potassium‐Ion Batteries: Pinpointed by a Full Screening of the Inorganic Registry under Specific Search Conditions , 2018 .

[16]  Jinghong Li,et al.  Molybdenum Carbide-Decorated Metallic Cobalt@Nitrogen-Doped Carbon Polyhedrons for Enhanced Electrocatalytic Hydrogen Evolution. , 2018, Small.

[17]  Wei Wang,et al.  Short‐Range Order in Mesoporous Carbon Boosts Potassium‐Ion Battery Performance , 2018 .

[18]  Xiulin Fan,et al.  Self-Templated Formation of P2-type K0.6CoO2 Microspheres for High Reversible Potassium-Ion Batteries. , 2018, Nano letters.

[19]  Lianjun Wang,et al.  Surface and Interface Engineering of Silicon‐Based Anode Materials for Lithium‐Ion Batteries , 2017 .

[20]  G. Ceder,et al.  K‐Ion Batteries Based on a P2‐Type K0.6CoO2 Cathode , 2017 .

[21]  Shujun Li,et al.  Crystalline (Ni1-xCox)5TiO7 nanostructures grown in situ on a flexible metal substrate used towards efficient CO oxidation. , 2017, Nanoscale.

[22]  D. Su,et al.  Hard–Soft Composite Carbon as a Long‐Cycling and High‐Rate Anode for Potassium‐Ion Batteries , 2017 .

[23]  Wangda Li,et al.  High-voltage positive electrode materials for lithium-ion batteries. , 2017, Chemical Society reviews.

[24]  X. Lou,et al.  A Practical High-Energy Cathode for Sodium-Ion Batteries Based on Uniform P2-Na0.7 CoO2 Microspheres. , 2017, Angewandte Chemie.

[25]  A. Zarbin,et al.  Carbon nanotube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery. , 2016, Journal of colloid and interface science.

[26]  Jin Han,et al.  Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. , 2016, Chemical communications.

[27]  A. Glushenkov,et al.  Tin-based composite anodes for potassium-ion batteries. , 2016, Chemical communications.

[28]  Rui Zhang,et al.  A Review of Solid Electrolyte Interphases on Lithium Metal Anode , 2015, Advanced science.

[29]  W. Luo,et al.  Potassium Ion Batteries with Graphitic Materials. , 2015, Nano letters.

[30]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[31]  Yanbing Guo,et al.  Monolithically integrated spinel M(x)Co(3-x)O(4) (M=Co, Ni, Zn) nanoarray catalysts: scalable synthesis and cation manipulation for tunable low-temperature CH(4) and CO oxidation. , 2014, Angewandte Chemie.

[32]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[33]  Hui Wu,et al.  Designing nanostructured Si anodes for high energy lithium ion batteries , 2012 .

[34]  Yi Cui,et al.  Copper hexacyanoferrate battery electrodes with long cycle life and high power. , 2011, Nature communications.

[35]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[36]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[37]  Zhan Lin,et al.  Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries , 2011 .

[38]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[39]  B. V. R. Chowdari,et al.  Influence of Li-Ion Kinetics in the Cathodic Performance of Layered Li ( Ni1 / 3Co1 / 3Mn1 / 3 ) O 2 , 2004 .

[40]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[43]  Andrew McDonagh,et al.  High‐Capacity Aqueous Potassium‐Ion Batteries for Large‐Scale Energy Storage , 2017, Advanced materials.