Data Driven Fault Diagnosis and Fault Tolerant Control: Some Advances and Possible New Directions: Data Driven Fault Diagnosis and Fault Tolerant Control: Some Advances and Possible New Directions

[1]  In-Beum Lee,et al.  Multiblock PLS-based localized process diagnosis , 2005 .

[2]  H. Wang,et al.  Control of conditional output probability density functions for general nonlinear and non-Gaussian dynamic stochastic systems , 2003 .

[3]  Julian Morris,et al.  On-line monitoring of a sugar crystallization process , 2005, Comput. Chem. Eng..

[4]  José C. Menezes,et al.  Multivariate monitoring of fermentation processes with non-linear modelling methods , 2004 .

[5]  Riccardo Leardi,et al.  Industrial experiences with multivariate statistical analysis of batch process data , 2006 .

[6]  ChangKyoo Yoo,et al.  On-line batch process monitoring using a consecutively updated multiway principal component analysis model , 2003, Comput. Chem. Eng..

[7]  S. Joe Qin,et al.  Semiconductor manufacturing process control and monitoring: A fab-wide framework , 2006 .

[8]  Hong Wang,et al.  Optimal probability density function control for NARMAX stochastic systems , 2008, Autom..

[9]  Hong Wang,et al.  Fault detection and diagnosis for general stochastic systems using B-spline expansions and nonlinear filters , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Fuli Wang,et al.  Adaptive Monitoring Based on Independent Component Analysis for Multiphase Batch Processes with Limited Modeling Data , 2008 .

[11]  Rolf Isermann,et al.  Hierarchical motor diagnosis utilizing structural knowledge and a self-learning neuro-fuzzy scheme , 2000, IEEE Trans. Ind. Electron..

[12]  ChangKyoo Yoo,et al.  Statistical monitoring of dynamic processes based on dynamic independent component analysis , 2004 .

[13]  Ana P Ferreira,et al.  Study of the application of multiway multivariate techniques to model data from an industrial fermentation process. , 2007, Analytica chimica acta.

[14]  J Glassey,et al.  Issues in the development of an industrial bioprocess advisory system. , 2000, Trends in biotechnology.

[15]  Hong Wang,et al.  Minimum entropy control of closed-loop tracking errors for dynamic stochastic systems , 2003, IEEE Trans. Autom. Control..

[16]  Ali Cinar,et al.  Intelligent process monitoring by interfacing knowledge-based systems and multivariate statistical monitoring , 2000 .

[17]  Yixin Diao,et al.  Stable fault-tolerant adaptive fuzzy/neural control for a turbine engine , 2001, IEEE Trans. Control. Syst. Technol..

[18]  Manabu Kano,et al.  Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry , 2008, Comput. Chem. Eng..

[19]  Lei Guo,et al.  Minimum entropy filtering for multivariate stochastic systems with non-Gaussian noises , 2005, Proceedings of the 2005, American Control Conference, 2005..

[20]  Chunhui Zhao,et al.  Adaptive Monitoring Method for Batch Processes Based on Phase Dissimilarity Updating with Limited Modeling Data , 2007 .

[21]  Ali Cinar,et al.  An intelligent system for multivariate statistical process monitoring and diagnosis. , 2002, ISA transactions.

[22]  Manabu Kano,et al.  Comparison of statistical process monitoring methods: application to the Eastman challenge problem , 2000 .

[23]  ChangKyoo Yoo,et al.  On-line monitoring of batch processes using multiway independent component analysis , 2004 .

[24]  J. Morris,et al.  Monitoring process manufacturing performance , 2002 .

[25]  George W. Irwin,et al.  Improved reliability in diagnosing faults using multivariate statistics , 2006, Comput. Chem. Eng..

[26]  Weihua Li,et al.  Recursive PCA for adaptive process monitoring , 1999 .

[27]  Christos Georgakis,et al.  Disturbance detection and isolation by dynamic principal component analysis , 1995 .

[28]  S Albert,et al.  Multivariate statistical monitoring of batch processes: an industrial case study of fermentation supervision. , 2001, Trends in biotechnology.

[29]  Hong Wang,et al.  Actuator fault diagnosis: an adaptive observer-based technique , 1996, IEEE Trans. Autom. Control..

[30]  Lei Guo,et al.  Observer-Based Optimal Fault Detection and Diagnosis Using Conditional Probability Distributions , 2006, IEEE Transactions on Signal Processing.

[31]  Jose A. Romagnoli,et al.  An integration mechanism for multivariate knowledge-based fault diagnosis , 2002 .

[32]  Manabu Kano,et al.  A new multivariate statistical process monitoring method using principal component analysis , 2001 .

[33]  Donghua Zhou,et al.  Real-time Reliability Prediction for a Dynamic System Based on the Hidden Degradation Process Identification , 2008, IEEE Transactions on Reliability.

[34]  Jin Hyun Park,et al.  Fault detection and identification of nonlinear processes based on kernel PCA , 2005 .

[35]  Hong Wang,et al.  On the use of adaptive updating rules for actuator and sensor fault diagnosis , 1997, Autom..

[36]  Hong Wang Minimum entropy control of non-Gaussian dynamic stochastic systems , 2002, IEEE Trans. Autom. Control..

[37]  ChangKyoo Yoo,et al.  Statistical process monitoring with independent component analysis , 2004 .