Learning to Generate Wasserstein Barycenters

[1]  Evgeny Burnaev,et al.  Continuous Wasserstein-2 Barycenter Estimation without Minimax Optimization , 2021, ICLR.

[2]  Justin Solomon,et al.  Continuous Regularized Wasserstein Barycenters , 2020, NeurIPS.

[3]  A. Cloninger,et al.  Linear Optimal Transport Embedding: Provable fast Wasserstein distance computation and classification for nonlinear problems , 2020, ArXiv.

[4]  Yongxin Chen,et al.  Scalable Computations of Wasserstein Barycenter via Input Convex Neural Networks , 2020, ICML.

[5]  Marco Cuturi,et al.  Debiased Sinkhorn barycenters , 2020, ICML.

[6]  S. Koukoulas,et al.  Clustering measure-valued data with Wasserstein barycenters , 2019 .

[7]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[8]  Marco Cuturi,et al.  Ground Metric Learning on Graphs , 2019, Journal of Mathematical Imaging and Vision.

[9]  A. Trouvé,et al.  Fast and Scalable Optimal Transport for Brain Tractograms , 2019, MICCAI.

[10]  Quentin Mérigot,et al.  Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein space , 2019, AISTATS.

[11]  François-Xavier Vialard,et al.  Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces , 2019, ESAIM: Mathematical Modelling and Numerical Analysis.

[12]  Justin Solomon,et al.  Learning Embeddings into Entropic Wasserstein Spaces , 2019, ICLR.

[13]  Cícero Nogueira dos Santos,et al.  Wasserstein Barycenter Model Ensembling , 2019, ICLR.

[14]  Gaël Guennebaud,et al.  Instant transport maps on 2D grids , 2018, ACM Trans. Graph..

[15]  Alain Trouvé,et al.  Interpolating between Optimal Transport and MMD using Sinkhorn Divergences , 2018, AISTATS.

[16]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[17]  Yalin Wang,et al.  Variational Wasserstein Clustering , 2018, ECCV.

[18]  Antoine Liutkus,et al.  Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions , 2018, ICML.

[19]  Felipe A. Tobar,et al.  Bayesian Learning with Wasserstein Barycenters , 2018, ESAIM: Probability and Statistics.

[20]  Steve Oudot,et al.  Large Scale computation of Means and Clusters for Persistence Diagrams using Optimal Transport , 2018, NeurIPS.

[21]  Ting-Chun Wang,et al.  Image Inpainting for Irregular Holes Using Partial Convolutions , 2018, ECCV.

[22]  Gabriel Peyré,et al.  Computational Optimal Transport , 2018, Found. Trends Mach. Learn..

[23]  Sebastian Claici,et al.  Stochastic Wasserstein Barycenters , 2018, ICML.

[24]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[25]  Andrea Vedaldi,et al.  Deep Image Prior , 2017, International Journal of Computer Vision.

[26]  Nicolas Courty,et al.  Learning Wasserstein Embeddings , 2017, ICLR.

[27]  Jean-Luc Starck,et al.  Wasserstein Dictionary Learning: Optimal Transport-based unsupervised non-linear dictionary learning , 2017, SIAM J. Imaging Sci..

[28]  Jian Yang,et al.  Image Super-Resolution via Deep Recursive Residual Network , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Gabriel Peyré,et al.  Learning Generative Models with Sinkhorn Divergences , 2017, AISTATS.

[30]  Narendra Ahuja,et al.  Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Jérémie Bigot,et al.  Geodesic PCA in the Wasserstein space by Convex PCA , 2017 .

[32]  Léon Bottou,et al.  Wasserstein GAN , 2017, ArXiv.

[33]  Stamatios Lefkimmiatis,et al.  Non-local Color Image Denoising with Convolutional Neural Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Bernhard Schmitzer,et al.  Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport Problems , 2016, SIAM J. Sci. Comput..

[35]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  J. Z. Kolter,et al.  Input Convex Neural Networks , 2016, ICML.

[37]  Frank Hutter,et al.  SGDR: Stochastic Gradient Descent with Warm Restarts , 2016, ICLR.

[38]  Andrea Vedaldi,et al.  Instance Normalization: The Missing Ingredient for Fast Stylization , 2016, ArXiv.

[39]  Minh N. Do,et al.  Semantic Image Inpainting with Deep Generative Models , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Gabriel Peyré,et al.  Wasserstein barycentric coordinates , 2016, ACM Trans. Graph..

[41]  Marco Cuturi,et al.  Fast Dictionary Learning with a Smoothed Wasserstein Loss , 2016, AISTATS.

[42]  Gabriel Peyré,et al.  Convolutional wasserstein distances , 2015, ACM Trans. Graph..

[43]  Marco Cuturi,et al.  Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric , 2015, NIPS.

[44]  Hossein Mobahi,et al.  Learning with a Wasserstein Loss , 2015, NIPS.

[45]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[46]  Volkan Cevher,et al.  WASP: Scalable Bayes via barycenters of subset posteriors , 2015, AISTATS.

[47]  Gabriel Peyré,et al.  Iterative Bregman Projections for Regularized Transportation Problems , 2014, SIAM J. Sci. Comput..

[48]  Nicolas Courty,et al.  Domain Adaptation with Regularized Optimal Transport , 2014, ECML/PKDD.

[49]  G. Peyré,et al.  Sliced and Radon Wasserstein Barycenters of Measures , 2014, Journal of Mathematical Imaging and Vision.

[50]  Arnaud Doucet,et al.  Fast Computation of Wasserstein Barycenters , 2013, ICML.

[51]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[52]  Enhong Chen,et al.  Image Denoising and Inpainting with Deep Neural Networks , 2012, NIPS.

[53]  Stefan Harmeling,et al.  Image denoising: Can plain neural networks compete with BM3D? , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[54]  Wolfgang Heidrich,et al.  Displacement interpolation using Lagrangian mass transport , 2011, ACM Trans. Graph..

[55]  Julien Rabin,et al.  Removing Artefacts From Color and Contrast Modifications , 2011, IEEE Transactions on Image Processing.

[56]  Julien Rabin,et al.  Wasserstein Barycenter and Its Application to Texture Mixing , 2011, SSVM.

[57]  Erik Reinhard,et al.  Colour Spaces for Colour Transfer , 2011, CCIW.

[58]  Alexandr Andoni,et al.  Earth mover distance over high-dimensional spaces , 2008, SODA '08.

[59]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[60]  Marcello Restelli,et al.  Propagating Uncertainty in Reinforcement Learning via Wasserstein Barycenters , 2019, NeurIPS.

[61]  Alexandr Andoni,et al.  Impossibility of Sketching of the 3D Transportation Metric with Quadratic Cost , 2016, ICALP.

[62]  Gustavo K. Rohde,et al.  A Linear Optimal Transportation Framework for Quantifying and Visualizing Variations in Sets of Images , 2012, International Journal of Computer Vision.

[63]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .