Stiffness Predictions for Unidirectional Short-Fiber Composites: Review and Evaluation

Abstract Micromechanics models for the stiffness of aligned short-fiber composites are reviewed and evaluated. These include the dilute model based on Eshelby's equivalent inclusion, the self-consistent model for finite-length fibers, Mori–Tanaka type models, bounding models, the Halpin–Tsai equation and its extensions, and shear lag models. Several models are found to be equivalent to the Mori–Tanaka approach, which is also equivalent to the generalization of the Hashin–Shtrikman–Walpole lower bound. The models are evaluated by comparison with finite-element calculations which use periodic arrays of fibers, and to Ingber and Papathanasiou's boundary element results for random arrays of aligned fibers. The finite-element calculations provide E11, E22, ν12, and ν23 for a range of fiber aspect ratios and packing geometries, with other properties typical of injection-molded thermoplastic matrix composites. The Halpin–Tsai equations give reasonable estimates for stiffness, but the best predictions come from the Mori–Tanaka model and the bound interpolation model of Lielens et al.

[1]  J. Halpin Stiffness and Expansion Estimates for Oriented Short Fiber Composites , 1969 .

[2]  I. Robinson,et al.  The influence of fibre aspect ratio on the deformation of discontinuous fibre-reinforced composites , 1994, Journal of Materials Science.

[3]  T. Mura,et al.  Elastic fields of inclusions in anisotropic media , 1971 .

[4]  J. D. Eshelby,et al.  The elastic field outside an ellipsoidal inclusion , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[6]  Roland Keunings,et al.  Prediction of thermo-mechanical properties for compression moulded composites , 1998 .

[7]  M. Taya,et al.  On Stiffness and Strength of an Aligned Short-Fiber Reinforced Composite Containing Fiber-End Cracks Under Uniaxial Applied Stress , 1981 .

[8]  Lawrence E. Nielsen,et al.  Dynamic mechanical properties of particulate‐filled composites , 1970 .

[9]  J. C. H. Affdl,et al.  The Halpin-Tsai Equations: A Review , 1976 .

[10]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[11]  R. Christensen,et al.  Solutions for effective shear properties in three phase sphere and cylinder models , 1979 .

[12]  T. Chow Effect of particle shape at finite concentration on the elastic moduli of filled polymers , 1978 .

[13]  S. Shtrikman,et al.  On some variational principles in anisotropic and nonhomogeneous elasticity , 1962 .

[14]  L. Walpole,et al.  On the overall elastic moduli of composite materials , 1969 .

[15]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[16]  George J. Weng,et al.  Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions , 1984 .

[17]  William B. Russel On the effective moduli of composite materials: Effect of fiber length and geometry at dilute concentrations , 1973 .

[18]  Zvi Hashin,et al.  THEORY OF MECHANICAL BEHAVIOR OF HETEROGENEOUS MEDIA , 1963 .

[19]  R. Hewitt,et al.  An Approximation for the Longitudinal Shear Modulus of Continuous Fibre Composites , 1970 .

[20]  I. Robinson,et al.  The effect of fibre aspect ratio on the stiffness of discontinuous fibre-reinforced composites , 1994 .

[21]  Rodney Hill,et al.  Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour , 1964 .

[22]  Toshio Mura,et al.  Micromechanics of defects in solids , 1982 .

[23]  J. Gillespie,et al.  The influence of aggregated and dispersed textures on the elastic properties of discontinuous-fiber composites , 1994 .

[24]  T. W. Clyne,et al.  A simple development of the shear lag theory appropriate for composites with a relatively small modulus mismatch , 1989 .

[25]  Z. Hashin,et al.  The Elastic Moduli of Fiber-Reinforced Materials , 1964 .

[26]  B. Budiansky On the elastic moduli of some heterogeneous materials , 1965 .

[27]  John C. Halpin,et al.  Primer on Composite Materials Analysis , 1984 .

[28]  Z. Hashin Closure to “Discussion of ‘The Elastic Moduli of Heterogeneous Materials’” (1962, ASME J. Appl. Mech., 29, p. 765) , 1962 .

[29]  Paul S. Steif,et al.  An energy method for calculating the stiffness of aligned short-fiber composites , 1987 .

[30]  George J. Weng,et al.  Explicit evaluation of Willis' bounds with ellipsoidal inclusions , 1992 .

[31]  B. W. Rosen,et al.  Mechanics of composite strengthening. , 1965 .

[32]  S. Umekawa,et al.  Thermal Expansions of Heterogeneous Solids Containing Aligned Ellipsoidal Inclusions , 1974 .

[33]  B. W. Rosen,et al.  Tensile failure of fibrous composites. , 1964 .

[34]  G. P. Tandon,et al.  The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites , 1984 .

[35]  Tsu-Wei Chou,et al.  A Self-Consistent Approach to the Elastic Stiffness of Short-Fiber Composites , 1980 .

[36]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[37]  Tsu-Wei Chou,et al.  On two kinds of ellipsoidal inhomogeneities in an infinite elastic body: An application to a hybrid composite☆ , 1981 .

[38]  R. Mclaughlin,et al.  The effect of fibre length on the overall moduli of composite materials , 1979 .

[39]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[40]  J. D. Eshelby Elastic inclusions and inhomogeneities , 1961 .

[41]  M. Taya,et al.  Metal Matrix Composites: Thermomechanical Behavior , 1989 .

[42]  Hiroshi Fukuda,et al.  On Young's modulus of short fibre composites , 1974 .

[43]  T. Chow Elastic moduli of filled polymers: The effect of particle shape , 1977 .

[44]  Zvi Hashin,et al.  On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry , 1965 .

[45]  H. L. Cox The elasticity and strength of paper and other fibrous materials , 1952 .

[46]  E. H. Kerner The Elastic and Thermo-elastic Properties of Composite Media , 1956 .

[47]  Gregory P. Carman,et al.  Micromechanics of short-fiber composites , 1992 .

[48]  J. Gillespie,et al.  The influence of inclusion geometry on the elastic properties of discontinuous fiber composites , 1994 .

[49]  Marc S. Ingber,et al.  A parallel‐supercomputing investigation of the stiffness of aligned, short‐fiber‐reinforced composites using the Boundary Element Method , 1997 .

[50]  L. Walpole On bounds for the overall elastic moduli of inhomogeneous systems—I , 1966 .

[51]  M. Taya On Stiffness and Strength of an Aligned Short-Fiber Reinforced Composite Containing Penny-Shaped Cracks in the Matrix , 1981 .

[52]  M. Ferrari,et al.  Composite homogenization via the equivalent poly-inclusion approach , 1994 .

[53]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[54]  Y. Benveniste,et al.  A new approach to the application of Mori-Tanaka's theory in composite materials , 1987 .

[55]  B. Henderson Defects in solids , 1975, Nature.

[56]  L. Nielsen Generalized Equation for the Elastic Moduli of Composite Materials , 1970 .

[57]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[58]  J. Willis Bounds and self-consistent estimates for the overall properties of anisotropic composites , 1977 .