Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization

Abstract In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries. Instead of the computational domain bounded by four B-spline curves, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including Bezier extraction and subdivision are performed on each boundary curve in order to generate a high-quality planar parameterization; then a robust planar domain partition framework is proposed to construct high-quality patch-meshing results with few singularities from the discrete boundary formed by connecting the end points of the resulting boundary segments. After the topology information generation of quadrilateral decomposition, the optimal placement of interior Bezier curves corresponding to the interior edges of the quadrangulation is constructed by a global optimization method to achieve a patch-partition with high quality. Finally, after the imposition of C 1 ∕ G 1 -continuity constraints on the interface of neighboring Bezier patches with respect to each quad in the quadrangulation, the high-quality Bezier patch parameterization is obtained by a local optimization method to achieve uniform and orthogonal iso-parametric structures while keeping the continuity conditions between patches. The efficiency and robustness of the proposed method are demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach.

[1]  Thomas J. R. Hughes,et al.  Volumetric T-spline construction using Boolean operations , 2014, Engineering with Computers.

[2]  Mario Kapl,et al.  Isogeometric analysis with geometrically continuous functions on two-patch geometries , 2015, Comput. Math. Appl..

[3]  Régis Duvigneau,et al.  Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method , 2013, J. Comput. Phys..

[4]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[5]  Bert Jüttler,et al.  Bounding the influence of domain parameterization and knot spacing on numerical stability in Isogeometric Analysis , 2014 .

[6]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[7]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[8]  Charlie C. L. Wang,et al.  Isogeometric computation reuse method for complex objects with topology-consistent volumetric parameterization , 2016, Comput. Aided Des..

[9]  Charlie C. L. Wang,et al.  Volume Parameterization for Design Automation of Customized Free-Form Products , 2007, IEEE Transactions on Automation Science and Engineering.

[10]  Hendrik Speleers,et al.  Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines , 2015, J. Comput. Appl. Math..

[11]  Martin Aigner,et al.  Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.

[12]  Régis Duvigneau,et al.  Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis , 2013, Comput. Aided Des..

[13]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[14]  Ya Yan Lu,et al.  Robust iterative method for nonlinear Helmholtz equation , 2017, J. Comput. Phys..

[15]  J. M. Cascón,et al.  A new approach to solid modeling with trivariate T-splines based on mesh optimization , 2011 .

[16]  Vinh Phu Nguyen,et al.  Isogeometric analysis suitable trivariate NURBS representation of composite panels with a new offset algorithm , 2014, Comput. Aided Des..

[17]  Mario Kapl,et al.  Isogeometric analysis with geometrically continuous functions on planar multi-patch geometries , 2017 .

[18]  T. Hughes,et al.  Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .

[19]  André Galligo,et al.  High-quality construction of analysis-suitable trivariate NURBS solids by reparameterization methods , 2014 .

[20]  Reza Ansari,et al.  Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis , 2016 .

[21]  Bert Jüttler,et al.  Planar multi-patch domain parameterization via patch adjacency graphs , 2017, Comput. Aided Des..

[22]  Jörg Peters,et al.  Matched Gk-constructions always yield Ck-continuous isogeometric elements , 2015, Comput. Aided Geom. Des..

[23]  Bert Jüttler,et al.  Parameterization of Contractible Domains Using Sequences of Harmonic Maps , 2010, Curves and Surfaces.

[24]  Jens Gravesen,et al.  Planar Parametrization in Isogeometric Analysis , 2012, MMCS.

[25]  M. J. D. Powell,et al.  Nonlinear Programming—Sequential Unconstrained Minimization Techniques , 1969 .

[26]  H. Nguyen-Xuan,et al.  Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling , 2017 .

[27]  Bert Jüttler,et al.  Adaptively refined multi-patch B-splines with enhanced smoothness , 2016, Appl. Math. Comput..

[28]  C. Roos,et al.  On the classical logarithmic barrier function method for a class of smooth convex programming problems , 1992 .

[29]  Suzanne M. Shontz,et al.  A log-barrier method for mesh quality improvement and untangling , 2012, Engineering with Computers.

[30]  Jörg Peters,et al.  Sharp, quantitative bounds on the distance between a polynomial piece and its Bézier control polygon , 1999, Comput. Aided Geom. Des..

[31]  Bernard Mourrain,et al.  Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology , 2016, Comput. Aided Geom. Des..

[32]  Xilu Wang,et al.  An optimization approach for constructing trivariate B-spline solids , 2014, Comput. Aided Des..

[33]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[34]  Régis Duvigneau,et al.  Parameterization of computational domain in isogeometric analysis: Methods and comparison , 2011 .

[35]  N. Nguyen-Thanh,et al.  An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics , 2014 .

[36]  Nancy M. Amato,et al.  Approximate convex decomposition of polygons , 2004, SCG '04.

[37]  Guoliang Xu,et al.  Isogeometric finite element approximation of minimal surfaces based on extended loop subdivision , 2017, J. Comput. Phys..

[38]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .

[39]  Jörg Peters,et al.  Refinable G1 functions on G1 free-form surfaces , 2017, Comput. Aided Geom. Des..

[40]  Guoliang Xu,et al.  Isogeometric analysis based on extended Loop's subdivision , 2015, J. Comput. Phys..

[41]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[42]  Thomas J. R. Hughes,et al.  Conformal solid T-spline construction from boundary T-spline representations , 2013 .

[43]  Jörg Peters,et al.  A geometric constraint on curve networks suitable for smooth interpolation , 2011, Comput. Aided Des..

[44]  Kenshi Takayama,et al.  Pattern‐Based Quadrangulation for N‐Sided Patches , 2014, Comput. Graph. Forum.

[45]  Falai Chen,et al.  Planar domain parameterization for isogeometric analysis based on Teichmüller mapping , 2016 .

[46]  Thomas J. R. Hughes,et al.  Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..

[47]  Timon Rabczuk,et al.  Volumetric parametrization from a level set boundary representation with PHT-splines , 2017, Comput. Aided Des..

[48]  Régis Duvigneau,et al.  Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications , 2013, Comput. Aided Des..

[49]  Jiansong Deng,et al.  Two-dimensional domain decomposition based on skeleton computation for parameterization and isogeometric analysis , 2015 .

[50]  Bert Jüttler,et al.  Planar domain parameterization with THB-splines , 2015, Comput. Aided Geom. Des..

[51]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[52]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[53]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[54]  Jörg Peters,et al.  Generalizing bicubic splines for modeling and IGA with irregular layout , 2016, Comput. Aided Des..

[55]  Avinash Karanth Kodi,et al.  SHARP , 2018, ACM Journal on Emerging Technologies in Computing Systems.

[56]  Guoqun Zhao,et al.  AUTOMESH‐2D/3D: robust automatic mesh generator for metal forming simulation , 2011 .

[57]  Vibeke Skytt,et al.  Spline Volume Fairing , 2010, Curves and Surfaces.

[58]  Elaine Cohen,et al.  Volumetric parameterization and trivariate B-spline fitting using harmonic functions , 2009, Comput. Aided Geom. Des..

[59]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .