Multiscale simulation of microbe structure and dynamics.

A multiscale mathematical and computational approach is developed that captures the hierarchical organization of a microbe. It is found that a natural perspective for understanding a microbe is in terms of a hierarchy of variables at various levels of resolution. This hierarchy starts with the N -atom description and terminates with order parameters characterizing a whole microbe. This conceptual framework is used to guide the analysis of the Liouville equation for the probability density of the positions and momenta of the N atoms constituting the microbe and its environment. Using multiscale mathematical techniques, we derive equations for the co-evolution of the order parameters and the probability density of the N-atom state. This approach yields a rigorous way to transfer information between variables on different space-time scales. It elucidates the interplay between equilibrium and far-from-equilibrium processes underlying microbial behavior. It also provides framework for using coarse-grained nanocharacterization data to guide microbial simulation. It enables a methodical search for free-energy minimizing structures, many of which are typically supported by the set of macromolecules and membranes constituting a given microbe. This suite of capabilities provides a natural framework for arriving at a fundamental understanding of microbial behavior, the analysis of nanocharacterization data, and the computer-aided design of nanostructures for biotechnical and medical purposes. Selected features of the methodology are demonstrated using our multiscale bionanosystem simulator DeductiveMultiscaleSimulator. Systems used to demonstrate the approach are structural transitions in the cowpea chlorotic mosaic virus, RNA of satellite tobacco mosaic virus, virus-like particles related to human papillomavirus, and iron-binding protein lactoferrin.

[1]  K Y Sanbonmatsu,et al.  Large-scale simulations of the ribosome: a new landmark in computational biology , 2006 .

[2]  D. Lemons,et al.  Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)] , 1997 .

[3]  B. Brooks,et al.  Molecular dynamics simulations of human rhinovirus and an antiviral compound. , 2001, Biophysical journal.

[4]  I. Oppenheim,et al.  The Lennard-Jones Lecture. The concept of Brownian motion in modern statistical mechanics , 1987 .

[5]  Joan-Emma Shea,et al.  Fokker-Planck equation and non-linear hydrodynamic equations of a system of several Brownian particles in a non-equilibrium bath , 1997 .

[6]  S. Meloni,et al.  Efficient particle labeling in atomistic simulations. , 2007, The Journal of chemical physics.

[7]  S Pankavich,et al.  Stochastic dynamics of bionanosystems: Multiscale analysis and specialized ensembles. , 2008, The Journal of chemical physics.

[8]  Peter J. Ortoleva,et al.  Curvilinear All-Atom Multiscale (CAM) Theory of Macromolecular Dynamics , 2008 .

[9]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[10]  Gregory A Voth,et al.  The multiscale coarse-graining method. IV. Transferring coarse-grained potentials between temperatures. , 2009, The Journal of chemical physics.

[11]  D. R. Mason,et al.  Faster neighbour list generation using a novel lattice vector representation , 2005, Comput. Phys. Commun..

[12]  S. Franceschi,et al.  Human papillomavirus type distribution in invasive cervical cancer and high‐grade cervical lesions: A meta‐analysis update , 2007, International journal of cancer.

[13]  Pedro Gonnet,et al.  A simple algorithm to accelerate the computation of non‐bonded interactions in cell‐based molecular dynamics simulations , 2007, J. Comput. Chem..

[14]  Gregory A Voth,et al.  Multiscale coarse-graining of monosaccharides. , 2007, The journal of physical chemistry. B.

[15]  Leslie G. Valiant A Bridging Model for Multi-core Computing , 2008, ESA.

[16]  P. Ortoleva,et al.  Multiscale analytic continuation approach to nanosystem simulation: applications to virus electrostatics. , 2010, The Journal of chemical physics.

[17]  S. Schwartz,et al.  Identification of Human Papillomavirus Type 16 L1 Surface Loops Required for Neutralization by Human Sera , 2006, Journal of Virology.

[18]  John E. Johnson,et al.  All-atom multiscale simulation of cowpea chlorotic mottle virus capsid swelling. , 2010, The journal of physical chemistry. B.

[19]  R. Kuhn,et al.  Enveloped viruses understood via multiscale simulation: computer-aided vaccine design , 2008 .

[20]  Gregory A. Voth,et al.  The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. , 2008, The Journal of chemical physics.

[21]  Jhih-Wei Chu,et al.  Emerging methods for multiscale simulation of biomolecular systems , 2007 .

[22]  Siewert J Marrink,et al.  Martini Coarse-Grained Force Field: Extension to Carbohydrates. , 2009, Journal of chemical theory and computation.

[23]  Gregory A Voth,et al.  Multiscale coupling of mesoscopic- and atomistic-level lipid bilayer simulations. , 2005, The Journal of chemical physics.

[24]  P. Ortoleva,et al.  Nanoparticle dynamics: a multiscale analysis of the Liouville equation. , 2005, The journal of physical chemistry. B.

[25]  Peter Minary,et al.  Dynamical Spatial Warping: A Novel Method for the Conformational Sampling of Biophysical Structure , 2008, SIAM J. Sci. Comput..

[26]  P. Ortoleva,et al.  Thermal nanostructure: an order parameter multiscale ensemble approach. , 2010, The Journal of chemical physics.

[27]  V. B. Nemtsov Statistical hydrodynamics of cholesteric liquid crystals , 1977 .

[28]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[29]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[30]  F. Ding,et al.  Discrete molecular dynamics , 2012 .

[31]  S. Jacobson,et al.  Surface-charge induced ion depletion and sample stacking near single nanopores in microfluidic devices. , 2008, Journal of the American Chemical Society.

[32]  L. Gissmann,et al.  Analysis of Modified Human Papillomavirus Type 16 L1 Capsomeres: the Ability To Assemble into Larger Particles Correlates with Higher Immunogenicity , 2009, Journal of Virology.

[33]  V. Pande,et al.  Normal mode partitioning of Langevin dynamics for biomolecules. , 2008, The Journal of chemical physics.

[34]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[35]  Mark E. Tuckerman,et al.  Molecular dynamics in systems with multiple time scales: Systems with stiff and soft degrees of freedom and with short and long range forces , 1991 .

[36]  S. Dvinskikh,et al.  A high-resolution solid-state NMR approach for the structural studies of bicelles. , 2006, Journal of the American Chemical Society.

[37]  Klaus Schulten,et al.  Application of Residue-Based and Shape-Based Coarse-Graining to Biomolecular Simulations , 2008 .

[38]  Benjamin Lindner,et al.  Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer. , 2009, Journal of chemical theory and computation.

[39]  Multiscale theory of finite-size Bose systems: Implications for collective and single-particle excitations , 2009, 1203.0794.

[40]  H. N. Chapman,et al.  Imaging Atomic Structure and Dynamics with Ultrafast X-ray Scattering , 2007, Science.

[41]  Todd J. Martinez,et al.  Graphical Processing Units for Quantum Chemistry , 2008, Computing in Science & Engineering.

[42]  Yinglong Miao,et al.  Molecular dynamics/order parameter extrapolation for bionanosystem simulations , 2009, J. Comput. Chem..

[43]  Peter S. Lomdahl,et al.  MOLECULAR DYNAMICS COMES OF AGE: 320 BILLION ATOM SIMULATION ON BlueGene/L , 2006 .

[44]  P. Ortoleva,et al.  Scaling behavior of quantum nanosystems: emergence of quasi-particles, collective modes, and mixed exchange symmetry states. , 2011, The Journal of chemical physics.

[45]  Matej Praprotnik,et al.  Adaptive resolution simulation of liquid water , 2007 .

[46]  G. Jennings,et al.  Immunodrugs: therapeutic VLP-based vaccines for chronic diseases. , 2009, Annual review of pharmacology and toxicology.

[47]  C. Wheeler,et al.  A controlled trial of a human papillomavirus type 16 vaccine. , 2002, The New England journal of medicine.

[48]  C. Robinson,et al.  Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. , 2009, Nature chemistry.

[49]  B. Brooks,et al.  An analysis of the accuracy of Langevin and molecular dynamics algorithms , 1988 .

[50]  JÜRGEN KRÄMER,et al.  Semantics and implementation of continuous sliding window queries over data streams , 2009, TODS.

[51]  K Y Sanbonmatsu,et al.  High performance computing in biology: multimillion atom simulations of nanoscale systems. , 2007, Journal of structural biology.

[52]  Arieh Warshel,et al.  Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems. , 2011, Annual review of physical chemistry.

[53]  G. Voth Coarse-Graining of Condensed Phase and Biomolecular Systems , 2008 .

[54]  Christian S. Jensen,et al.  Nearest and reverse nearest neighbor queries for moving objects , 2006, The VLDB Journal.

[55]  D. Chandler,et al.  Dynamic pathways for viral capsid assembly. , 2005, Biophysical journal.

[56]  I. Bahar,et al.  Coarse-grained normal mode analysis in structural biology. , 2005, Current opinion in structural biology.

[57]  Martin Karplus,et al.  Normal mode calculations of icosahedral viruses with full dihedral flexibility by use of molecular symmetry. , 2005, Journal of molecular biology.

[58]  Gregory A Voth,et al.  Multiscale coarse graining of liquid-state systems. , 2005, The Journal of chemical physics.

[59]  Peter Ortoleva,et al.  A molecular dynamics study of loop fluctuation in human papillomavirus type 16 virus-like particles: a possible indicator of immunogenicity. , 2011, Vaccine.

[60]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[61]  Don S. Lemonsa Paul Langevin ’ s 1908 paper ‘ ‘ On the Theory of Brownian Motion ’ ’ [ ‘ ‘ Sur la the ́ orie du mouvement brownien , 1997 .

[62]  P. Ortoleva,et al.  MULTISCALE BORN-OPPENHEIMER THEORY OF COLLECTIVE ELECTRON-NUCLEAR DYNAMICS IN NANOSYSTEMS , 2011 .

[63]  Irwin Oppenheim,et al.  Fokker−Planck Equation and Langevin Equation for One Brownian Particle in a Nonequilibrium Bath , 1996 .

[64]  R. Zwanzig Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).

[65]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[66]  P. Ortoleva,et al.  Viral structural transition mechanisms revealed by multiscale molecular dynamics/order parameter extrapolation simulation. , 2010, Biopolymers.

[67]  Zhongwei Zhu,et al.  Using novel variable transformations to enhance conformational sampling in molecular dynamics. , 2002, Physical review letters.

[68]  Leslie J. Allen,et al.  Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy , 2010 .

[69]  Gregory A Voth,et al.  Modeling real dynamics in the coarse-grained representation of condensed phase systems. , 2006, The Journal of chemical physics.

[70]  David E. Shaw,et al.  A fast, scalable method for the parallel evaluation of distance‐limited pairwise particle interactions , 2005, J. Comput. Chem..

[71]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .

[72]  Christophe Chipot,et al.  Comprar Free Energy Calculations · Theory and Applications in Chemistry and Biology | Chipot, Christophe | 9783540736172 | Springer , 2007 .

[73]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[74]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[75]  Gregory A Voth,et al.  The multiscale coarse-graining method. II. Numerical implementation for coarse-grained molecular models. , 2008, The Journal of chemical physics.

[76]  J. Barthel,et al.  Quantification of the information limit of transmission electron microscopes. , 2008, Physical review letters.

[77]  A Singharoy,et al.  Order parameters for macromolecules: application to multiscale simulation. , 2011, The Journal of chemical physics.

[78]  R. Cukier,et al.  Spin Relaxation: The Multiple‐Time‐Scale Point of View , 1969 .

[79]  André E. X. Brown,et al.  Forced unfolding of coiled-coils in fibrinogen by single-molecule AFM. , 2007, Biophysical journal.

[80]  Khuloud Jaqaman,et al.  New space warping method for the simulation of large‐scale macromolecular conformational changes , 2002, J. Comput. Chem..

[81]  Y. Mechref,et al.  Microchip electrophoresis of N‐glycans on serpentine separation channels with asymmetrically tapered turns , 2011, Electrophoresis.

[82]  Martin Müller,et al.  A Direct Comparison of Human Papillomavirus Type 16 L1 Particles Reveals a Lower Immunogenicity of Capsomeres than Viruslike Particles with Respect to the Induced Antibody Response , 2008, Journal of Virology.

[83]  B. Speelman,et al.  Theoretical studies of viral capsid proteins. , 2000, Current opinion in structural biology.

[84]  A. Pohorille,et al.  Free energy calculations : theory and applications in chemistry and biology , 2007 .

[85]  D. Svergun,et al.  Small-angle scattering studies of biological macromolecules in solution , 2003 .

[86]  Alan Garfinkel,et al.  Multi-scale modeling in biology: how to bridge the gaps between scales? , 2011, Progress in biophysics and molecular biology.

[87]  Xiaojiang S. Chen,et al.  Structure-based engineering of papillomavirus major capsid L1: controlling particle assembly , 2007, Virology Journal.

[88]  Albert J R Heck,et al.  Ion mobility mass spectrometry of proteins and protein assemblies. , 2010, Chemical Society reviews.

[89]  M. Nowak Immune Responses against Multiple Epitopes: a Theory for Immunodominance and Antigenic Variation Competition between Ctl Epitopes: the Competitive Exclusion Principle , 2022 .

[90]  A. Navid Microbial Systems Biology: Methods and Protocols , 2022, Methods in Molecular Biology.

[91]  A. Mariam Cervical cancer vaccines available in 2007. , 2005 .

[92]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .

[93]  H. Selinka,et al.  Characterization of neutralizing epitopes within the major capsid protein of human papillomavirus type 33 , 2006, Virology Journal.

[94]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[95]  S. Iyengar,et al.  Multiscale theory of collective and quasiparticle modes in quantum nanosystems. , 2008, The Journal of chemical physics.

[96]  Nick Koudas,et al.  The design of a query monitoring system , 2009, TODS.

[97]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[98]  William Smith,et al.  SHAKE, rattle, and roll: Efficient constraint algorithms for linked rigid bodies , 1998, J. Comput. Chem..

[99]  Martin C. Herbordt,et al.  Achieving High Performance with FPGA-Based Computing , 2007, Computer.

[100]  Gregory A. Voth,et al.  The Multiscale Coarse- Graining Method: A Systematic Approach to Coarse-Graining , 2008 .

[101]  Z Shreif,et al.  Self-assembly of nanocomponents into composite structures: derivation and simulation of Langevin equations. , 2009, The Journal of chemical physics.

[102]  Y. Kim,et al.  How Nature Modulates Inherent Fluctuations for Biological Self-Organization – The Case of Membrane Fusion , 2005, Journal of biological physics.

[103]  S. Ahmed,et al.  Electronic Structure of InN/GaN Quantum Dots: Multimillion-Atom Tight-Binding Simulations , 2010, IEEE Transactions on Electron Devices.

[104]  A Singharoy,et al.  Simulating microbial systems: addressing model uncertainty/incompleteness via multiscale and entropy methods. , 2012, Methods in molecular biology.

[105]  C. Robinson,et al.  Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. , 2009, Nature chemistry.

[106]  S. Iyengar,et al.  Quantum wave packet ab initio molecular dynamics: an approach to study quantum dynamics in large systems. , 2005, The Journal of chemical physics.

[107]  Charles L. Brooks,et al.  CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations , 2004, J. Comput. Chem..

[108]  S. Zaleski,et al.  Lattice-gas models of phase separation: interfaces, phase transitions, and multiphase flow , 1994 .

[109]  Guido Germano,et al.  Efficiency of linked cell algorithms , 2010, Comput. Phys. Commun..

[110]  Gui-Rong Liu,et al.  Improved neighbor list algorithm in molecular simulations using cell decomposition and data sorting method , 2004, Comput. Phys. Commun..

[111]  E. Vanden-Eijnden,et al.  A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations , 2006 .

[112]  Adam Zlotnick,et al.  Theoretical aspects of virus capsid assembly , 2005, Journal of molecular recognition : JMR.

[113]  Weiguo Liu,et al.  Accelerating molecular dynamics simulations using Graphics Processing Units with CUDA , 2008, Comput. Phys. Commun..

[114]  Dhabaleswar K. Panda,et al.  Performance Comparison of MPI Implementations over InfiniBand, Myrinet and Quadrics , 2003, ACM/IEEE SC 2003 Conference (SC'03).

[115]  Gregory A Voth,et al.  Multiscale coarse-graining and structural correlations: connections to liquid-state theory. , 2007, The journal of physical chemistry. B.

[116]  S. Larson,et al.  Biophysical studies on the RNA cores of satellite tobacco mosaic virus. , 2001, Biophysical journal.

[117]  Remo Rohs,et al.  Molecular flexibility in ab initio drug docking to DNA: binding-site and binding-mode transitions in all-atom Monte Carlo simulations , 2005, Nucleic acids research.

[118]  Eric J. Bohm,et al.  Scalable Molecular Dynamics with NAMD on Blue Gene / L , 2012 .

[119]  Peter L. Freddolino,et al.  Molecular dynamics simulations of the complete satellite tobacco mosaic virus. , 2006, Structure.

[120]  D. Lowy,et al.  Characterization of a human papillomavirus type 16 variant-dependent neutralizing epitope , 1997, Journal of virology.

[121]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[122]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[123]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[124]  Michela Taufer,et al.  Molecular dynamics simulations of aqueous ions at the liquid–vapor interface accelerated using graphics processors , 2011, J. Comput. Chem..

[125]  Alexander D. MacKerell,et al.  Development and current status of the CHARMM force field for nucleic acids , 2000, Biopolymers.

[126]  R. Zwanzig Nonlinear generalized Langevin equations , 1973 .

[127]  Gregory A Voth,et al.  Multiscale modeling of biomolecular systems: in serial and in parallel. , 2007, Current opinion in structural biology.

[128]  Robert Walkup,et al.  Simulating materials failure by using up to one billion atoms and the world's fastest computer: Brittle fracture , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[129]  Gregory A Voth,et al.  Multiscale coarse-graining of ionic liquids. , 2006, The journal of physical chemistry. B.

[130]  Tirion,et al.  Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. , 1996, Physical review letters.

[131]  Klaus Schulten,et al.  Accelerating Molecular Modeling Applications with GPU Computing , 2009 .

[132]  Joseph A. Bank,et al.  Supporting Online Material Materials and Methods Figs. S1 to S10 Table S1 References Movies S1 to S3 Atomic-level Characterization of the Structural Dynamics of Proteins , 2022 .

[133]  J. Kreider,et al.  Experimental infection with human papillomavirus type 1 of human hand and foot skin. , 1990, Virology.

[134]  Avisek Das,et al.  The multiscale coarse-graining method. III. A test of pairwise additivity of the coarse-grained potential and of new basis functions for the variational calculation. , 2009, The Journal of chemical physics.

[135]  Bernard R. Brooks,et al.  An improved method for nonbonded list generation: Rapid determination of near‐neighbor pairs , 2003, J. Comput. Chem..

[136]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[137]  G. Lawes,et al.  Scanning Electron Microscopy and X-Ray Microanalysis , 1987 .

[138]  Florence Tama,et al.  The mechanism and pathway of pH induced swelling in cowpea chlorotic mottle virus. , 2002, Journal of molecular biology.

[139]  John Shalf,et al.  The International Exascale Software Project roadmap , 2011, Int. J. High Perform. Comput. Appl..

[140]  J. Dillner,et al.  Deletion of a major neutralizing epitope of human papillomavirus type 16 virus-like particles. , 2007, The Journal of general virology.

[141]  A. Schneemann The structural and functional role of RNA in icosahedral virus assembly. , 2006, Annual review of microbiology.

[142]  C. Robinson,et al.  Evidence for Macromolecular Protein Rings in the Absence of Bulk Water , 2005, Science.

[143]  V. Devita,et al.  Cancer : Principles and Practice of Oncology , 1982 .

[144]  Philippe Büchler,et al.  Coupling biomechanics to a cellular level model: an approach to patient-specific image driven multi-scale and multi-physics tumor simulation. , 2011, Progress in biophysics and molecular biology.

[145]  Philippe H. Hünenberger,et al.  A fast pairlist‐construction algorithm for molecular simulations under periodic boundary conditions , 2004, J. Comput. Chem..

[146]  H J Berendsen,et al.  Bio-Molecular Dynamics Comes of Age , 1996, Science.

[147]  Di-Bao Wang,et al.  Algorithm optimization in molecular dynamics simulation , 2007, Comput. Phys. Commun..

[148]  P. Mazur On the theory of brownian motion , 1959 .

[149]  H. Berendsen,et al.  COMPUTER-SIMULATION OF MOLECULAR-DYNAMICS - METHODOLOGY, APPLICATIONS, AND PERSPECTIVES IN CHEMISTRY , 1990 .

[150]  Vijay S Reddy,et al.  Invariant polymorphism in virus capsid assembly. , 2009, Journal of the American Chemical Society.

[151]  Robert Zwanzig,et al.  Memory Effects in Irreversible Thermodynamics , 1961 .

[152]  F. Ding,et al.  Ab initio folding of proteins with all-atom discrete molecular dynamics. , 2008, Structure.

[153]  H. Gaub,et al.  Adhesion forces between individual ligand-receptor pairs. , 1994, Science.

[154]  Eric Darve,et al.  Computing generalized Langevin equations and generalized Fokker–Planck equations , 2009, Proceedings of the National Academy of Sciences.

[155]  Avisek Das,et al.  The multiscale coarse-graining method. V. Isothermal-isobaric ensemble. , 2010, The Journal of chemical physics.

[156]  H. zurHausen Human papillomavirus & cervical cancer. , 2009 .

[157]  M. Pütz,et al.  Optimization techniques for parallel molecular dynamics using domain decomposition , 1998 .

[158]  A. McDermott Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. , 2009, Annual review of biophysics.

[159]  Y. Dufrêne,et al.  Detection and localization of single molecular recognition events using atomic force microscopy , 2006, Nature Methods.

[160]  M. Klein,et al.  Crystal Structures of Four Types of Human Papillomavirus L1 Capsid Proteins , 2007, Journal of Biological Chemistry.

[161]  Z Shreif,et al.  Liquid-crystal transitions: a first-principles multiscale approach. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.